PHYSICAL REVIEW E 68, 031913 (2003

Punctuated equilibria and ¥/f noise in a biological coevolution model
with individual-based dynamics

Per Arne Rikvold%%* and R. K. P. Zi&"
1School of Computational Science and Information Technology, Center for Materials Research and Technology,
and Department of Physics, Florida State University, Tallahassee, Florida 32306-4120, USA
2Center for Stochastic Processes in Science and Engineering, Department of Physics, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061-0435, USA

3Department of Physics and Astronomy and ERC Center for Computational Sciences, Mississippi State University,

Mississippi State, Mississippi 39762-5167, USA
(Received 17 June 2003; published 26 September)2003

We present a study by linear stability analysis and large-scale Monte Carlo simulations of a simple model of
biological coevolution. Selection is provided through a reproduction probability that contains quenched, ran-
dom interspecies interactions, while genetic variation is provided through a low mutation rate. Both selection
and mutation act on individual organisms. Consistent with some current theories of macroevolutionary dynam-
ics, the model displays intermittent, statistically self-similar behavior with punctuated equilibria. The probabil-
ity density for the lifetimes of ecological communities is well approximated by a power law with exponent near
—2, and the corresponding power spectral densities shéwdise (flicker noisg over several decades. The
long-lived communitiegquasisteady statesonsist of a relatively small number of mutualistically interacting
species, and they are surrounded by a “protection zone” of closely related genotypes that have a very low
probability of invading the resident community. The extent of the protection zone affects the stability of the
community in a way analogous to the height of the free-energy barrier surrounding a metastable state in a
physical system. Measures of biological diversity are on average stationary with no discernible trends, even
over our very long simulation runs of approximately 840" generations.
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I. INTRODUCTION and selection act. A number of evolution mod&se, e.g.,
Ref.[1] for a review from a physicist's point of vievthere-
Biological evolution offers a number of important, un- fore take as their basis a genome in the form of a string of
solved problems that are well suited for investigation by“letters” as in Eigen’s quasispecies model of molecular evo-
methods from statistical physics. Many of these can be studution [5,6]. Depending on the level of the modeling, the
ied using complex, interacting model systems far from equiietters of the genomic “alphabet” can be(possibly large
librium [1]. Areas that have generated exceptional intereshumber of alleles at a gene locus, or the four nucleotides of
among physicists are those of coevolution and speciation. & DNA or RNA sequencé?]. However, the size of the al-
large class of coevolution models have been inspired by onphabet is not of great importance in principle, and it is com-
introduced by Bak and Snepp¢8], in which species with mon in models to use a binary alphabet with the two letters 0
different levels of “fitness” compete, and the least fit speciesand 1(or =1) [1,5-7.
and those that interact with it are regularly “mutated” and  We believe a fruitful approach to the study of coevolution
replaced by new species with different, randomly chosen fitis one in which selection is provided by interspecies interac-
ness. Models in this class exhibit avalanches of extinctionsions along the lines commonly considered in community
and appear to evolve towards a self-organized critical statecology, while genetic variation is provided by random mu-
[3,4]. Although such models may be said to incorporate Dartations in the genomes of individual organisms. An early
win’s principle of “survival of the fittest,” they are artificial attempt in this direction is the coupl&tK model with popu-
in the sense that mutation and selection are assumed to dation dynamics introduced by Kauffman and Johng&#],
collectively on entire species, rather than on individual mem-but thus far not many similar models have been studied.
bers of their populations. Recently, Hall and co-workersl0—12 introduced a model
In reality, mutations are changes in the genotypemdif  they called the “tangled-nature” model, in which each indi-
vidual organismsthat are introduced or passed on duringvidual lives in a dynamically evolving “fithess landscape”
reproduction. These changes in the genotype affect the phereated by the populations of all the other species. Here we
notype(physical and behavioral characteristics of the organconsider a simplified version of this model, in which no in-
ism and its interactions with other organigmand it is on  dividual is allowed to live through more than one reproduc-
the level of the phenotypes of individuals that competitiontion cycle. This restriction to nonoverlapping generations en-
ables us to both study the model in detail by linear stability
analysis and to perform very long Monte Carlo simulations
*Electronic address: rikvold@csit.fsu.edu of its evolutionary behavior. In short, the model consists of
"Electronic address: rkpzia@vt.edu populations of different species, on which selec-
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tion acts through asexual reproduction rates that depend atent ofl andt. The main difference from the model of Refs.
the populations of all the other species via a constant, rar-l0—12 is that the generations are nonoverlapping in our
dom interaction matrix that allows mutualistic, competitive, model, while individuals in the original model may live
and predator-prey relations. In addition to these direct interthrough several successive reproduction cycles. This simpli-
actions, all individuals interact indirectly through competi- fication facilitates theoretical analysis and enables us to
tion for a shared resource. The competition keeps the totahake significantly longer simulations than those reported in
population from diverging. Genetic variety is provided by aRefs.[10—12. In the “opposite” direction, the earlier model
low mutation rate that acts on the genomes of individualcould be generalized to include nontrivial “age structures,”
organisms during reproduction, inducing the populations teince individuals living through several cycles can be as-
move through genotype space. The resulting motion is intersigned an age, with age-dependent survival and reproductive
mittent: long periods of stasis with only minor fluctuations propertieg17-25.

are interrupted by bursts of significant change that is rapid on As in the original mode[10-13, the reproduction prob-

a macroscopic time scale, reminiscent of what is known irability P, is taken as

evolutionary biology as punctuated equilibria3—-15. A

preliminary report on some aspects of the work reported here 1

is given in Ref.[16]. P,({ny(t)})= .
The main foci of the present paper are the structure and 1+ex;{—2 M 305(t)/Nig(t) + Nii(1)/No

stability of communities and the statistical properties of the J

dynamical behavior on very longgeological”) time scales. (1)

The rest of the paper is organized as follows. In Sec. Il we

describe our model in detail, including the detailed MonteHere, the Verhulst factoN, [26] represents an environmen-
Carlo algorithm used for our simulations. In Sec. Il we dis-tal “carrying capacity” that might be due to limitations on
cuss the properties of the fixed points of the population foshared resources, such as space, light, or water. It prevents
the mutation-free version of the model. Many of these propthe total population from indefinite growth, stabilizing it at
erties can be understood analytically within a simple mean©(N,). The interaction matriM expresses pair interactions
field approach. A full, probabilistic description of our model petween different species such that the elenvptgives the

is also possible, although the mathematics is somewhat ineffect of the population density of specidson specied.
volved. In Appendix A we provide, for the sake of complete- Thus, a mutualistic relationship is represented by bdif
ness, the key equations of this approach. In Sec. IV we givend M ;, being positive, while both being negative models a
a detailed report on our large-scale Monte Carlo simulationgompetitive relationship. If they are of opposite signs, we
and the numerical results, together with a discussion of theihave a predator-prey situation. To concentrate attention on
relations to the fossil record and to other theoretical modelsthe effects of interspecies interactions, we follow REf€—
Finally, in Sec. V, we summarize our results and give our12] in setting the self-interactions! ;= 0. The off-diagonal
conclusions and suggestions for future studies. elements ofM; are randomly and uniformly distributed on
[—1,1] as in Ref[11]. The interaction matrix is set up at the
beginning of the simulation and is not changed later, a situ-
ation that corresponds to quenched disorder in spin-glass

As mentioned in Sec. |, we use a simplified version of themodels[27]. We note that we have not attempted to gite
tangled-nature model introduced by Hall and co-workersa particularly biologically realistic form. Some possible
[10-12. It consists of a population of individuals with a modifications are discussed in Sec. V.
genome ofL genes, each of which can take one of the two In this model there is a one-to-one correspondence be-
values 0 or 1. Thus, the total number of different genotypesween genotypdthe Ith specific bit stringy and phenotype
is Nmax=2". We consider each different genotype as a sepaéthe Ith row and column oM). Thus, the phenotype speci-
rate species, and we shall in this paper use the two ternmfges both how théth species influences the other species that
interchangeably. This is justified by the idea that in the relaare either actually or only potentially present in the commu-
tively short genomes we can consider computationally, eachity (thelth column and how it is influenced by othefthe
binary “gene” actually represents a group of genes in alth row). The reproduction probabilit{, provides selection
coarse-grained sense. of the “most fit” phenotypes according to these “traitéha-

In our version of the model, the population evolves intrix element$ and the populations of the other species
discrete, nonoverlapping generatiof@s in, e.g., many in- present in the community. The effe@ir lack thereof of a
sects, and the number of individuals of genotypén gen-  particular trait depends on the community in which the spe-
erationt is n,(t). The total population i®(t)=2,n,(t). In  cies exists, just as a cheetah’s superior speed is only relevant
each generation, the probability that an individual of geno+to survival if fast-moving prey is available.
type | produces a litter ofF offspring before it dies is In each generation, the genomes of the individual off-
P,({ny(t)}), while the probability that it dies without off- spring organisms are subjected to mutation with probability
spring is 1-P,. Although the fecundityF could be quite u/L per gene and individual. Mutated offspring are reas-
complex in reality(e.g., a function of on the average, but signed to their new genotypes before the start of the next
random both in time and for each individialve here take a generation. This provides the genetic variability necessary
simplistic approach and assume that it is a constant, indepeiffor evolution to proceed.

Il. MODEL AND ALGORITHM
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The analytic form ofP,({n;(t)}), Eq.(1), is by no means gies(q-ESS [10,11. By ignoring mutations, we can make
unique. For instance, one could use a “soft dynaniz8] in some analytical progress and gain some insight into the na-
which the effects of the interactions and the Verhulst factorture and stability properties of these QSS.
factorize inP,. Alternatively, one could dispense with the
exponential and use linear or bilinear relationships instead, A. N-species fixed points

as is most common in population biolof9]. Investigations ) . '
of the effects of such modifications are left for the future. A fixed point of Eq.(2), defined by

Our evolution algorithm proceeds in three layers of nested n¥(t+1)=n*(t)=n} 3)
loops. ’

(1) Loop over generations _ is characterized by having only” (<2%) nonvanishingn} .
~ (2) Loop over theM(t) populated genotypeisin genera-  (Henceforth, an asterisk will signify a quantity as a fixed-
tion t. point value) Following Ref.[32], we denote a fixed point as

(38 Loop of lengthn, (t) over the individuals of genotype  feasibleif n* >0 for all A/ values ofl. Corresponding to the
I. Each individual produceB offspring for generatiori+ 1 coexistence of\ genotypes, such a point will be simply

with probability P,({n;(t)}), or dies without offspring with  referred to as an A-species fixed point.” When mutations
probability 1—P,. In either case, no individual survives e ignored, Eq(2) reduces to

from generatiort to generatiort+1.

(3b) Loop of length equal to the total number of offspring n(t+21)=n(t)FP,({ny(t)}). (4)
of genotypel generated in loog3a), attempting to mutate
each gene of each individual offspring with probabilityL., ~ Specializing to the form oP, given by Eq.(1), we see that
and moving mutated offspring to their respective new genoall single-species fixed points are trivially “identical,” with

types for generation+ 1. Ny =Nj;=NoIn(F—1). This somewhat unrealistic result is
just a consequence of our choice bf,;=0 and can be
IIl. LINEAR STABILITY ANALYSIS avoided by lifting this restriction. However, the absence of

self-interactions places no restriction on the main purpose of
Though neither our model nor the simulations are deterour work—the exploration of the effects of random but time-
ministic, a number of their gross properties can be underindependent interspecies interactions.
stood in terms of a mean-field approximation that ignores Proceeding to theN=2 cases, the existence of an

statistical fluctuations and correlations. The time evolution Of/\/-species fixed point depends critically on the submattix
the populations is then given by the set of difference equagith matrix elementdM,; in which bothl andJ are among

tions, the \ species in questioriWe shall use the tilde to empha-
B size that a quantity corresponds to Afspecies subspace,

My (t+ 1) =mOFP ({ny(N[1— ] rather than to the full, 2dimensional genotype spagén
E 5 particular, if M is nonsingular, then a unique fixed point

+('“/L)FK(|) My (DPray(Ans(H) +O(u), exists, as we show below. On the other hand, singMar

may result in a variety of “degenerate” cases. We provide
2 just two examples to illustrate the mathematical richness of

wheres ;) runs over the genotypes (1) that differ from singularM 's_. If QII elements vanish, then the behavior [n this
| by one single mutatiorfi.e., the Hamming distancg80] ~ Subspace is h|ghly degenerate, with ttwal population
Hy, =1). The corrections 0O(u2) correspond to multiple  9iven again byNi,=NolIn(F—1), regardless afV. However,
mutations in single individuals. Naturally, a full investigation the fractions of each species,

of this equation is highly nontrivial, even in the absence of Nk

random noise. In particular, Eq2) can be regarded as a pr =0 /Nigt, ®)
logistic map in a 2-dimensional space. Logistic maps are
known to admit, in general, both fixed points and cycles o
nontrivial periodq29]. To keep both analysis of simulations . . . -
and theoretical investigations manageable, we choose paramt_hgrmfg(a_mple of a singular interaction SPbm?‘t”X'\’B
) in an N=2 subspace. Then, EG}) will drive one

eters in such a way that we can focus our attention on fixed (0 0 _ A v ' )
points. of the species to extinction, so that no fixed point with both

Of course, what we simulate are stochastic processe8)=0 (stable or unstabecan exist in this two-dimensional
However, as long as the mutation rate is well below the erropubspace, and the system collapse&/tel. For the remain-
threshold for mutational melt-dowii,5-7,10,12 new suc- der of this paper, we shall study analytically only the dy-
cessful mutations can become fixed in the population befor@amical behavior of interacting species with nonsingular
another successful mutant arises. This results in a separatidh’s.
of time scales between the ecological scale of fluctuations To proceed, we insert E¢R) into Eq.(4) and arrive at the
within fixed-point communities and the evolutional scale of A/ equations
the durations of such communiti€31], which are known as
quasisteady statd®S9 or quasievolutionarily stable strate- FP({nj}H=1. (6)

fare completely undetermined, an understandable conse-
quence of having dynamically indistinguishable species. An-
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With our choice ofP,, these lead to an(t+1)
—— (13
* &nJ(t) *
* Ntot {nf'}
2 Mypl =3~ In(F-1). () _ _
J 0 must have real parts, lying betweerll and 1. Carrying out

o . . . . the differentiation and using E¢4) to simplify the result, we
(The analysis in this section remains valid eveMifi#0,  find this matrix to be of the forml+A, wherel is the

althoughM,, =0 is the case explicitly considered elsewhere \/ 4imensjonal unit matrix and the elementsZfare given
in this pape). Note that the right-hand side of E7) is g

~ by
independentf |. SinceM is nonsingular, we define its in-
byW, with elements\,; : A e S
verse byWw, 13 Ap={1-g|p{My=In(F-1)-2/3]. (14)
Wi=(M™1),;. tS) Our criterion translates to the requirement that all the eigen-
, . values of A must have real parts that lie i-2,0). Fixed
Then Eq.(7) can be inverted to give points with this property will be called “internally stable.”
. Unfortunately, this criterion cannot be made more explicit.
pF = N_tot_m(F_l) E W, . (9) GivenF and a set oM,;, A must be coantructed using Egs.
No J (8)—(11) and diagonalized. The matriA is recognized as

what is known in ecology as theommunity matri§29] of

The only unknown in this equatiolNg,, can now be found the A-species fixed point for the discrete-time dynamic de-
via the normalization conditio p;" =1, which leads to fined by Eq.(4).

It has been shown, both numerical83] and analytically
[34], that the proportion of large, random matrices for which
all eigenvalues have a negative real part vanishes as the pro-
portion of nonzero matrix elements increases. This has been
used as an argument that highly connected ecosystems are
intrinsically unstablg/34], contrary to ecological intuition.
EEE W, (11) However, the matrix that must be studied to determine the

N}

internal stability of a fixed point is the community matrk
which has a complicated relationship to the interaction ma-
Putting these into Eq9), we have the explicit form of the trix M and should not be expected to have a simple element
fixed-point populations: distribution. In fact, for some bilinear population dynamics
models there is humerical evidence that niestsiblefixed
points are also internally stabl82,35. However, the rela-

N /No=In(F —1)+1/3, (10)

where

1 EJ: Wi, tions between connectivity and stability have not yet been
nF =No| IN(F—1)+ = | ——=—. (12)  fully clarified and are still being discuss¢@6,37).
S0 Of course, issues of internal stability are somewhat aca-

demic for simulations. In practice, an internally unstable

Although Eq.(12) appears to provide fixed-point values fixed point could not be observed for more than a brief time,
for any choice of control parameters, we emphasize that it igspecially since the populations would be driven away from
applicable only for a limited range & andM. The subtlety such fixed points by the noise due to both the birth/death

lies in its stability properties within tha/~species subspace. process and the mutations.
First, we remind the reader that, even in the casé/ef1, B. Stability against other species
there are a variety of behaviors. Solutions may have a stable

fixed point with either monotonic or oscillatory decay of . » e, ; X
small deviations, or they may show bifurcations, period dou2y behavior, the “external stability” properties of the fixed-
point communities are important. Even if the population cor-

bling, and chao$29]. In the present study, we are interestedr nds to an internally stabla ies fixed Doint
in the effects of the interspecies interactions, and we theré~Ponds 10 an internally stabl&-Species tixed point,
fore choose to focus on systems with monotonically decaym utat_lons will generate small populapons of .|nvader spe-
ing fluctuations in the noninteracting limit. This means that®'es: 1€ genotypes outside the resd&ﬁSpgues commu-
small fluctuations about the fixed point must decay asmty' Denoting such mvader_s by_the sub_scmpmd lineariz-
S(t+1)/5(t) e (0,1). For the single species adi=0 cases Ing Eq. (4) about theN-species fixed point, we see that the

this restriction is easily translated to the conditior<2 :snggir:tnc'zﬁznlrgt sztcaengﬁilr?p_hﬁ\?“on rate of the invader
=4.5 for the fecundity. We usé=4 in all of our simula- P Gi Mot

Since mutations are essential for the long-time evolution-

tions.
. . . . i(t+
Next, through a straightforward linear stability analysis mi(t+1) = F )
around theV-species fixed point, we ot_Jtain a condition t.hat ni(t) 1+(F—1)ex 1_2 MiJ\7VJ|< S
represents decay of all small perturbations, i.e., all the eigen- JK
values of the matrix (15)
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To obtain this result we exploited Eq4.0) and(12). Explic-  quantities were recorded every 16 generations. This time
itly, the condition for stability against the invader, resolution was chosen to be just larger than the average time
n;(t+1)/n;(t)<1, reduces to the requirement that the argu-it would take for the descendants of a single individual of a
ment of the exponential function in E¢L5) must be posi- mutant genotypéto completely replace a resident genotype
tive. We also note that, iM;;=0 for all J in the resident Jof Ny=2000 individuals in the case of a maximally aggres-
community, then the multiplication rate of the invader equalssive mutant,M;;=+1 andM;=—1. This time, which is
unity. In population biology the Lyapunov exponenfrijit =~ obtained by numerical solution of E¢L5), is about 15 gen-
+1)/ni(t)] is known as theénvasion fithessf the mutant with  erations and represents a “minimum growth time” for the
respect to the resident communf§1,38. From Eq.(15) it model. Sampling at shorter intervals would mostly add ran-
becomes clear that the success of an invader depends rwm noise to the results, while sampling on a much coarser
only on its direct interactiond,;; with each of the resident scale could miss important evolutionary events. It is easy to
species, but also on the interactions between the resideshow, by solving Eq(15) analytically for short times, that
species through the inverse interaction submatvix . the growth time(and thus the optimal sampling interyal

increases logarithmically witiN,. Most quantitative results

in this paper are based on averages over 16 independent

IV. SIMULATION RESULTS simulation runs of 25=33554 432 generations eaf30].

The model described in Sec. Il was studied by Monte We define thaliversityof the population as the number of
Carlo simulations with the following parametets=13, F species. with significant populations, thus excluding sm_all
=4, Ny=2000, andx=10"3. The random matriM (with populations of mal_nly unsuccessful mutan_ts of_ the major
zero diagonal and other elements randomly distributed of€notypes. Operationally, we define the diversity (x§)
[—1,1]) was chosen at the beginning of each simulation rur- &HS{N(D}))], whereS s the information-theoretical en-
and then kept constant for the duration of the run. In thisfoPy [40,41,
regime both the number of populated speci€ét), and the
total populationN,y(t) ~NgIn(F—1)~2200 are substantially S({n;(t)})=— 2 pi(DInp (1), (16)
smaller than the number of possible specif, =2 {llp1 (>0}
=8192. This appears biologically reasonable in view of the
enormous number of different possible genotypes in naturgVith
(But see further discussion in Sec. IV E and AppendixIB.

a QSS, the average number of mutant offspring of spdcies pi()=n(1)/Nio(1). (17)

in generationt+1 is approximatelywn,(t). Thus, with the _ i o _

mutation rate used here, each of the dominant species willNis measure of diversity is known in ecology as the
produce of the order of one mutant organism per generatiorﬁha!"'”onfw'e”er inde)2]. It is different from the definition

As shown in Sec. IV B, during a QSS most of these mutant®f diversity as the number of populated spedilsown in
become extinct after one generation. However, due to th8¢0logy as thespecies richnespi2]) that was used in Refs.
small genome size, the same mutant of a species with a largé0.11. The entropy-based measure significantly reduces the
population will be regenerated repeatedly by mutation from0ise during QSS, caused by unsuccessful mutations.

the parent species. The_Shanr)on-W|ener dlvers_lty index is show_n in Figa) 1

A high-population genotype with its “cloud” of closely for a simulation of 1_6 generations, together with the nor-
related low-population mutants could be considered a quahalized total populatioM,(t)/[ NoIn(F—1)]. We see quiet
sispecies in the sense of Eigen, with the high-populatioP€riods during whicfD(t) is constant except for small fluc-
genotype as the “wildtype{1,5-7,13. An alternative inter- tuations, separated by periods during which it fluctuates
pretation of the model is therefore as one of the coevolutionvildly. The total populatiorN;o(t) is enhanced relative to its
of quasispecie$12], in which the successful invasion of a noninteracting fixed-point value during the quiet periods,
resident community by a mutant represents a speciatioWh”e it decreases toward the vicinity of this value during the

event in the lineage of the parent genotype. active periods. _ o
To verify that different quiet periods indeed correspond to

different resident communitien,}, we show in Fig. 2 the
genotype labeld (integers between 0 and-2 1, corre-
Most of our simulations were started with a small popu-sponding to the decimal representation of the genotype bit
lation of 100 individuals of a randomly selected single geno-string) versus time for the populated species. The popula-
type, corresponding to the entry into an empty ecologications of the different species are indicated by the gray scale
niche by a small group of identical individuals. However, (by color onling. We see that, in general, the community is
runs starting from a random number of small populations ofcompletely rearranged during the active periods, so that the
different species give essentially the same results. Generallguiet periods can be identified with the QSS of the ecology.
the initial species are not likely to be stable against mutantsAn exception is afforded by the event ngar1.5x 10° gen-
and they usually become extinct within 100 generations. Taerations in Figs. (8) and Za). In this instance the popula-
eliminate any short initial transients, most of the quantitativetions of the dominant species decrease, and the total popula-
analyses presented here are based on time series from whitbin is, for a brief time, spread over a larger number of
the first 4096 generations were removed. The simulatedpecies. However, the dominant species “regain their foot-

A. General features
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FIG. 1. (Color online Time series from a simulation of §@enerations. The model parameters, which are the same in the subsequent
figures, are mutation rate=10"2 per individual, carrying capaciti,=2000, fecundityF=4, and genome length=13. Top curve
(black: Shannon-Wiener diversity indexD(t)=exdS({n(t)})]. Bottom curve (gray, red onling normalized total population
Nioi(1)/[ NgIn(F—1)]. (8) The whole time series, showing intervals of quasisteady st@8§ separated by periods of high activiti) Part
of one of the periods of high activity, shown on a time scale expanded 20 times. Several shorter QSS are resolved between bursts of high
activity. Comparison witH{@) suggests statistical self-similarity. See discussion in Secs. IV A and IV C.

ing,” and the original resident community continues for ap-

proximately another 50000 generations. This situation is (Hy=2> > pipy
s . . . . N 1-p,

reminiscent of rare events in nucleation theptg], in which

a fluctuation of the order of a critical or even a supercritical

droplet nevertheless may decay back to the metastable state

1
1 Py )HIJa (18)

and the corresponding standard deviation

1 1

B. Stability of communities against invaders \//\/ 1 P|PJ< 1-p, + 1——;13) (H;—(H))?
To investigate the stability properties of individual com- (19

munities against invaders, we chose from a particular simu-
lation run of 16 generations ten different QSS of durations are shown in the fifth and sixth columns, respectively. Even
longer than 20000 generations. The genotype labels anthough the community as a whole moves far through the
fixed-point populations that characterize these QSS are give?t-dimensional population space, the different QSS commu-
in the first four columns of Table I. The population-weighted nities are seen to retain the property that they consist of
average of the Hamming distanceék; between pairs of relatively close relativegwhich, of course, are all descen-
genotypes in the community, dants of the single, initial genotypen Sec. IV E we dem-
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Time (generations) Time (generations)

FIG. 2. (Color online Genotype label versus time for the same simulation run shown in Fig. 1. In order of decreasing darkness from
black to very light gray the symbols indicatg=1001,n, €[ 101,1000, n,e[11,100, n; €[2,10], andn,=1. (Online the colors are black,
blue, red, green, and yellow in the same orddiote that the difference between the label for two species bears no simple relation to their
Hamming distance. Each QSS is composed of a different set of species, punctuated by periods during which the population moves rapidly
through genotype spac@) Corresponding to Fig.(d), sampled every 320 generations to facilitate plottifiny.Corresponding to Fig.(b),
sampled every 16 generations. See discussion in Secs. IV A and IV C.
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TABLE |. Composition and lifetime statistics of ten QSS that lasted at least 20 000 generations in a particular simulation fun of 10
generations. The QSS are listed in order of increasing mean lifetime. Columns 1-4 give the genotype labels and, in parentheses, the initial
populationdthe fixed-point populations given by E@.2)] for the A’ genotypes in each QSS. Columns 5 and 6 give the population-weighted
mean and standard deviation of th& V'~ 1)/2 Hamming distances between the genotypes in the initial community,(BEg)sand (19),
respectively. Columns 7 and 8 give the mean and standard deviations/gt e 1) off-diagonal interaction matrix elemerits,; between
the genotypes in the initial community, respectively. Columns 9 and 10 give the mean and standard deviations of the lifetimes, obtained from
300 independent escapes for each QSS. See discussion in Secs. IVB and IV C.

Initial QSS
Genotype labell (Population,n}") (H) oH (M) oy, (Lifetime)  oyjetime
5180 (10595 5692 (1506 7272 (682 2.79 2.26 0.79 0.16 11 366.2 11093.4
4251 (1051 6275 (1077 6283 (1003 2.02 1.01 0.70 0.16 12261.4 11634.4
2836 (16249 2982 (1472 4.00 0.00 0.90 0.06 12277.7 19708.3
7135 (995 7357 (909 8191 (1201 3.77 1.96 0.67 0.23 19289.9 17 865.6
4260 (1212 4518 (979 5285 (1078 191 0.99 0.81 0.16 20216.3 20056.4
4244 (10349 6164 (1063 6196 (330 6676 (786 1.99 0.91 0.67 0.30 35057.9 57527.9
3334 (915 3402 (1298 3403 (1099 245 154 0.83 0.13 39577.2 44935.3
1122 (1308 1146 (987 2149 (1076 450 243 0.89 0.07 399724 38328.8
7380 (1159 7388 (683 7412 (1406 1.28 0.55 0.79 0.16 62186.5 67521.7

5860 (677 7397 (1407 7653 (473 7909 (694 195 1.17 0.71 0.25 80821.8 85716.1

onstrate thatH) andoy remain in the range shown in Table single mutation(nearest-neighbor species, niy=1), and
[, even during very long simulations. by two mutations(next-nearest-neighbor species, ghip
The averages and standard deviations of the off-diagonat2) [46]. Only a very small proportion of the nearest-
interaction-matrix elementdvl,; between the community neighbor mutants have a multiplication rate above ulity.
members are shown in the seventh and eighth columns &a)]. (In our sample, this very small proportion came from
Table |, respectively. They show that the QSS communitiegust one of the ten QSS considenedmong the next-nearest
are strongly mutualistic, as was also observed for the stableeighbors, on the other hand, a not insignificant proportion
states in Ref[8]. In contrast, the matrix elements of 22 fea- may be successful invaddisig. 3(b)]. The picture for third-
sible, but otherwise randomly chosen, communifié$,45 nearest neighborgot shown is essentially the same as for
were found to be approximately uniformly distributed on the next-nearest neighbors. We also considered the multipli-
[—1,1]. cation rates for neighbors of the two most long-lived QSS
In Fig. 3 we show histograms of the multiplication rates, observed in our simulations, which lasted about<i10’ and
Eqg. (15 (i.e., the exponential function of the invasion fit- 1.4x 10’ generations, respectively. They both had no nearest
nes$, of mutants that differ from the resident species by oneneighbors with multiplication rates above unity, and the pro-

2.5 T T T T T T 7T T T T T T T I T T 1 2.5 T T T T T T 7T T T T T T T T ] 1T T 1
il + @ ] _ ® |
- = — QsS 1 - [ — QsS 1
15 | — Arbitrary feasible sets| | 1.5 — Arbitrary feasible sets|
1+ L HH -1 all .
0.5 N — — 0.5— 7‘ —
N — } L | L i ‘7\ i i
RER== |1
0= L L L T 0= = I N e L
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
ni(t+1)/ni(t) for Nearest Neighbors ni(t+1)/ni(t) for Next-nearest Neighbors

FIG. 3. (Color onling Histograms of the multiplication rat@xponential of the invasion fithesfer mutant speciesagainst each of ten
specific QSSthick, black lines, compared with the same quantity against randomly chosen, feasible commfthitiegray lines(green
onling)]. The multiplication rates are calculated from E@5). (&) When the mutant species differ from the resident community by a
Hamming distance of {nearest neighbor6]). (b) When the mutant species differ from the resident community by a Hamming distance
of 2 (next-nearest neighbgrsSee discussion in Sec. IV B.
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portions for second and third neighbors were significantlyvidual lifetime distributions were exponentidbr which the
smaller than those included in Fig. 3. In both parts of Fig. 3standard deviation equals the mgaor they had an exponen-
are also shown the multiplication rates for neighbors of theial component that described the behavior in the short-time
22 randomly chosen, feasible communities introduced in thend of the range of observed lifetimes. In about half of the
previous paragraph. In that case, approximately half of th€)Ss studied, a tail of very long lifetimes beyond the expo-
neighbors at any Hamming distance have multiplication rategential part(indicated by a standard deviation significantly
above unity. . larger than the mearwas also observed. We further found
Summarizing the results from Table | and Fig. 3, we seqngat an initial QSS does not always escape via the same exit
that a long-lived QSS community is characterized bycommunity. Typically, the genotypes in the exit community
strongly mutualistic interactions and is surrounded by anat are not present in the initial QSS differ from those in the
“protection zone” of closely related genotypes that are verygriginal community by a Hamming distance of two or three.
unlikely to successfully invade the resident community. Therhs picture is quite consistent with the stability properties of
evidence from the two most long-lived QSS indicates thane QSS discussed in Sec. IV B.
the average lifetime of a QSs is positively correlated with  The range of the lifetimes of the ten QSS discussed above
the extent of the protection zone. By contrast, a randomlyy,s jimited: for a period to be identified by eye as a QSS, its
chosen, feasible community has an approximately unifornifetime could not be too short, while the lifetimes were
distribution of M; over [—1,1]. It also typically has no  pounded above by the length of the simulation run. The
protection zone and so is more vulnerable to invasion than gariation of a factor of ten within these limits indicates that
QSS. Itis c!ear from the_ _fact that none of our randomlyne dynamical behavior of the system may display a very
chosen feasible communities turned out to be a QSS thajde range of time scales. Another indication to this effect is
QSS are relatively rare in this model, even among feasiblgrovided by the details of the activity within periods that
communities. We believe this may be a favorable cond|t|orhppear as high activity in Figs(d and 2a). Such detail is
for continuing evolution, as th'e ecology can move rapidlyshown in Figs. tb) and 2b). Statistically, the picture in
from QSS to QSS through series of unstable communities. these expanded figures is similar to the one seen on the larger
scale, with shorter quiet periods punctuated by even shorter
C. QSS lifetime statistics bursts of activity. These observations, which are similar to

The protection zone surrounding a QSS community actsRefS'[lo’lﬂ’ su.ggest statlstlcql sglf-5|mllar|ty 6.“ I_eagt over
ome range of time scales. Indications of self-similarity have

much like the free-energy barrier that separates a metastabi S0 been seen in fossil diversity recofds.

state in a physical system from the stable state or other meta- The suggestion of self-similarity that emerges from Figs.

stable states. In both cases a sequence of improbable muta- . . . .
i . . , o and 2 makes it natural to investigate the statistics of the
tions or fluctuations is required to reach a critical state tha

will lead to major rearrangement of the system. It is thusduratlons of active periods and QSS over a wider range of

natural to investigate in detail the lifetime statistics of indi- 'Ell_gtiescialgfotr:agithai rfvpresentgld tby the ten Qb?S 'nciﬁdgdtm
vidual QSS in the way common in the study of metastable - From Fig. 1 we see that a reasonable metnod to
decay[43.47. To this effect we started simulations from make this distinction is to observe th_e magnitude of the en-
L O , ropy changes|dS(t)/dt|, and to consider the system to be
each of the ten QSS communities discussed in Sec. IV B anl}ri1 the active state if this quantity is above some suitably
ran until the overlap function with the initial community, chosen cutoff. This cutoff can best be determined from a
histogram ofd §/dt, such as that shown in Fig(a. It shows
> n(0)ny(1) that the probability density of the entropy derivative consists
: (20) of two additive parts: a near-Gaussian one corresponding to
' population fluctuations caused mostly by the birth/death pro-
\/2 N (0)2>, ny(t)2 cess in the QSS, and a second one corresponding to large
[ J changes during the active periods. From this figure we chose
the cutoff as 0.015, which was used to classify every
became less than 0.5, at which time the system was considampled time point as either active or quiet. Normalized his-
ered to have escaped from the initial stdi¥e note that the tograms for the durations of the active and quiet periods are
overlap function defined here is simply the cosine of theshown in Fig. 4b). About 97.4% of the time is spent in QSS.
angle between two unit vectors in the space of populatiorThe active periods are seen to be relatively short, and their
vectors{n,}.) The precise value of the cutoff used is not probability density is fitted well by an exponential distribu-
important, as long as it is low enough to exclude fluctuationgion [49]. On the other hand, the lifetimes of the QSS show a
during the QS947]. The composition of the population at very broad distributiod11}—possibly a power law with an
this time (the “exit community”) was then recorded and the exponent near-2 for durations longer than about 200 gen-
run terminated. Each individual initial QSS was simulatederations. We note that there is some evidence of power laws
for 300 independent escapes. The means and standard deweth exponents near 2 in the distributions of several quan-
tions of the individual lifetime distributions are shown in the tities extracted from the fossil record, such as the life spans
last two columns of Table I. The mean lifetimes were foundof genera or families, and the sizes of extincti)f®—53.
to range over about one order of magnitude, from approxiHowever, the fossil data are sparse and extend over no more
mately 10 000 to 80 000 generations. In most cases the indthan one or two decades in time, and they can be fitted al-

o) =
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FIG. 4. (Color online (a) Normalized histogram of entropy changes, averaged over 16 generdtimhkscurve with shading Based on
16 independent runs of?2=33554 432 generations each. The near-Gaussian central peak corresponds to the QSS, while the near-
exponential wings correspond to the active periods. Also shown by a thin line is a histogram based on birth/death fluctuations in ten specific
QSS communities with zero mutation rate. The latter is renormalized so that the maxima of the two histograms coincide. Based on these
histograms, a cutoff gfS(t) — S(t— 16)]/16=0.015 was used to distinguish between active periods and @5Sormalized histograms for
the length of active periodst) and QS solid, light gray circlegcyan onling and solid, dark gray squarésed onling]. Based on 16
independent runs of?2 generations each. Two of the histograms énd circle$ use a constant bin width of 16 generations. In order to
capture the information for large durations, the data for the QSS were also analyzed with exponentially increasinddujnasiee Error
bars showing standard error based on the spread between the individual runs are shown only where they are larger than the symbol size. The
black curve through the points for the active periods is a least-squares fit of an exponential distribution to the data. The straight line is a guide
to the eye, corresponding toxZ/behavior for the QSS data. See Sec. IV C for details.

most as well by exponential distributiofs0]. Although our  proportional to the frequency (1/f noise or flicker noise
data extend over a much wider range of time scales than tH&6]) for f>10"4, goes through a crossover regime of about
paleontological data, indisputable evidence of a power lawne decade itfi where it is~f~“ with a>1, and then ap-
remains to be established. Though a few QSS of the order gfears to return tae~1 for 10 6<f<107°. Forf<10 % our

10° generations will certainly appear in every run of°2 data are insufficient to determine the PSD unambiguously,
generations, more definite conclusions about the statistics @nd much longer simulations would be neces$&#. In the
such long QSS must await simulations an order of magnitud®SD forN(t), shown in Fig. ), the substantial popula-
longer. Another feature in Fig.(8) is that the distribution of ~ tion fluctuations due to the birth/death process during the
QSS durations changes to a smaller slope below about 20@SS periods produce a large noise background which inter-

generations. A similar effect has been observed in the fossferes with the interpretation at high frequencies. However,
record of lifetimes of familie§52,53. for f<10 ° the behavior is also consistent withf Tioise.

On time scales much longer than the mean duration of an
active period, the time series for the diversity can be approxi-
mated by constants during the QSS, interrupted by

From the discussion in Sec. IV C it is clear that by using é-function-like spikes corresponding to the active periods
a cutoff for the intensity of some variable which is large in (see Fig. L In this limit, the relation between a very wide
the QSS and small in the active periodmit in both cases distribution of the QSS durations described by a long-time
with fluctuations of unknown distributignit is impossible to  power-law dependence of the probability densibyr)
classify the periods unambiguously. For example, by increas~ 7~ #, and the low-frequency behavior of the PSD is known
ing the cutoff one can make appear as a single QSS pericahalytically[58]:
what previously appeared as two successive, shorter QSS

D. Power spectral densities

periods separated by a short active period. Since the prob- f=(B=1) for pB<2

ability of encountering an extremely large fluctuation in a 1/(f|In f|?) for p=2

QSS increases proportionally to the length of the QSS, this —(B-1)(3-)

effect will affect the longest periods most severely. The prob- P(f)~q f for 2<p<3 (21)
lem with determining a suitable cutoff can be avoided by, [In f| for B=3

instead of concentrating on period statistics, calculating the
power spectral densitPSD) [54,55 of variables such as the
Shannon-Wiener diversity index or the total population.Thus, the approximate flbehavior of the PSDs in Fig. 5 is
PSDs for these two quantities are shown in Fig. 5. The PS[Bonsistent with the approximate7%/behavior of the prob-
for the diversityD(t), shown in Fig. %a), appears inversely ability density for the QSS durations, shown in Figby

const for B>3.
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FIG. 5. (Color onling Power spectral densitié®SD) [54] for simulations of length 2 generations, sampled every 16 generations and
averaged over 16 independent runs. Black curve: no variance reduction. Gray(@dwvenling: 16-fold variance reduction. Error bars
shown for the eight lowest frequencies in each curve are standard errors, based on the spread between the individual runs. The straight line
is a guide to the eye, corresponding td behavior.(a) Shannon-Wiener diversity inde® (t) =exd S{n,(t)})]. (b) Normalized total
populationN,(t)/[ NoIn(F—1)]. See discussion in Sec. IV D.

As well as power-law distributions, PSDs that go a&*1/ major genotypes should indeed be limited. The argument
with a~1 have been extracted from the fossil recp48). goes as follows. A community of” genotypes can be chosen

However, such observed PSDs extend only over one to twg, (,2\;) different ways and is influenced by(N—1)/2 dif-
decades in frequendgorresponding to power-law probabil- ferent pairs ofMl;; andM,,. We let the probability that the
ity densities extending only over one or two decades iMyajr of interactions is suitable to forming a stable community
time), and more recent work indicates that thé &pectra pg q (if the requirement is simply that botM,; and M,

obtained in Ref[48] may be artifacts of the analysis method ghoid be positive, theg= 1/4 with our choice oM). Thus,
[59]. Although 1f noise, at least in some frequency interval,

is a property of our model and is possibly also seeninother [T T~ " T T T T T T T T T T T T T T
models of macroevolutiof2] (but see Refd.60,61] for con- 8l N |
flicting opinions on its presence in the Bak-Sneppen model oo ses" et semeosenetestorefertosfopeetts of THe T ueneetey
whether or not it is really present in the fossil record remains [ ]
an open question. 6

E. Stationarity and effects of finite genome size

An important issue in evolutionary biology is whether or 4~ N
not the evolving ecosystem is stationary in a StatiStiCal SENSE [reeeteersessesstegertortonstuss oo Ay oqoty s toess® te conne]

In Fig. 6 we show several diversity-related measures, aver WMMA\‘"‘\..[
aged over a moving time window and independent simula-2 B
tion runs. These quantities are the species richA&ss, the .

number\5(t) of genotypes witm,=2, the Shannon-Wiener [
index D(t), the total populationNy(t), and the average ¢l v v vl v v v v v v b v v v v v Lo
Hamming distancéH) between genotypes in the community 1x10’ 2x10 3x107
and its standard deviatiom, . As seen in the figure, none of Time (generations)

these quantities show any signs of a long-time trend of&r 2

. g . . . . FIG. 6. (Color online Combined time-window and ensemble
generations. This is consistent with fossil evidence for con- . L7 .

- . L . . averages of various diversity-related measures. Each data point rep-
stant diversity[62]. However, it is in disagreement with

. . - . resents an average over a time window 612524 288 generations
simulations of the original version of the tangled-nature

del . hich | hi ) ich and over 16(circles or 7 (triangleg independent runs of? gen-
model[10], in which a slow growth in species richness WaS grations each. Shown are, from above to below, the total number of

observed. This discrepancy might possibly result from thes,ecies Aft), the numberNy(t) of species withn,=2, the
different forms of the interaction matrix used in the two stud-ghannon-wiener indeR(t), the average Hamming distan¢el)
ies, but it may also be due to the relatively short time seriegetween genotypes in the community, the normalized total popula-
used in Ref[10]. tion Ni(t)/[NoIn(F—1)], and the standard deviatiom, of the

For our model, a simple, combinatorial phase-space argu4amming distances. These data indicate the absence of any system-
ment (containing neither the individual population sizes noratic long-time trends in the dynamical behavior. See discussion in
the mutation rateindicates that the most probable number of Sec. IV E.
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The result with the parameter values used in this paper is of
the order of 16%. However, unstable communities are also
briefly visited, especially during active periods, and a more
inclusive way of counting communities would be a coarse-
graining procedure based on the overlap function defined in
Eqg. (20). The nonzero populations are recorded-ad, and
the overlap with this initial community is monitored until at
somet’ >0 it falls below a suitably chosen cutafl. ;. The
set{n,(t")} is then recorded as a new community withas
its starting time. The process is repeated, now comparing
with the newly recorded community. This procedure creates
| a list of communities and their starting times. To address the
——— issue of revisits, we next scan this list to extract those com-
1.5x10 munities that represent revisits to a previously visited com-
munity, or “prototype community.” We compare each com-
FIG. 7. (Color onling The number of different genotypes visited Munity {n;(t)} in~the original list with the previously fOlind
at different population levels, shown vs time for the first half of a communities{n,(t)}, sequentially in order of increasing
single run of Z° generations. From above to below,=2, n,  <t. If none of the overlaps is greater thah,, {n,(t)} is
=11, n;=101, andn,=1001. Horizontal plateaus correspond to added to the list of prototypesty(t,) with t,=t. If an over-

QSS. See discussion in Sec. IVE. lap greater tharO.,, is found at some, we stop the com-

, ) ) _ parisons and add this community to the list of revisits
a stableA-species community can be formed in approxi- o4 (t). The starting time of this revisited community,

8000F 7

6000}

Genotypes visited
I
S
S
S

2000

o, . . .

0.0 5.0x10° 1.0x10’
Time (generations)

mately =t, is associated in the list1,(t,) with the uniquapzT, the

oL starting time of the associated prototype. As the system
QWN)= ( /\/) qN(Nf bi2 (22) evolves, the number of items in each list increases monotoni-

cally. Clearly, the cutoffs should be sufficiently small such

ways, which obeys the recursion relation that communities that differ only by fluctuations inside a
Y QSS are not considered different, but sufficiently large to

- avoid counting significantly different communities as identi-

QN*+D)= N+1 qNQ(M (23 cal. From inspection of the overlap fluctuations in some of

the QSS included in Table I, we found th@t, in the range

with Q(1)=2". This recursion relation can either be used toof 0.90-0.95 is optimal. Estimates of the total numbers of
find the most probable valua/" numerically, or one can communities(stable and unstablghat can in principle be
easily obtain an estimate valid for “2A: NT  distinguished by this method are obtained in Appendix B.
~LIn2/In(1/q). The value numerically obtained witly Depending on details of the assumptions, the estimates vary
=1/4 isN''=6, but the close correspondence to the resultbetween 18 and 168 for these cutoffs.
shown in Fig. 6 may be fortuitous since the dependence of The results of the procedure described above it
NT onqis only logarithmic. =0.90 and 0.95 are shown in Fig. 8 for a single run 6f 2

Another question of interest is whether the limited size ofgenerations. The upper pair of curves in Figa)8corre-
the genome leads to “revisiting” of genotypes and commu-sponds toO.,=0.95, and the lower pair t@.,~=0.90. In
nities. The answer is affirmative and indicates the importanceach pair, the upper curve shows the total number of com-
of further studies of the effects of the genome size on thenunities in the listsM(t;) and M(t;), while the lower
long-time dynamical behavior. For genotypes the question ofurve shows just the number of prototypesMi(t,). For
revisits is easy to answer, and the results for a single run o, =0.95, about 40% of the communities are seen to be
2% generations are shown in Fig. 7. As we see, in less tharevisits, while the proportion is about 30% 6= 0.90. In
3% 10° generations, at least two individuals of every geno-both cases, the curve for the number of prototypes remains
type have appeared simultaneougtyrve labeledn,>1). approximately linear, indicating that the supply of previously
By the end of the run, almost every genotype has enjoyednvisited communities is nowhere near to being exhausted,
being a major species witly= 1001 at least once. Plots on a even for such a long run. In view of the enormous numbers
log versus linear scalénot shown indicate that the curves of available communities estimated above, this result is rea-
are reasonably well approximated by exponential approachesnable. QSS appear as plateaus in the curves showing the
to Max indicating that genotypes appear to be nearly rannumbers of prototypes. Figurél8 provides a different per-
domly visited and revisited at a constant rate dependent ospective(for O.,= 0.95 only. Each revisit is represented by
n . a point witht, as abscissa ant} as ordinate. Thus, every

For communities, the question is more difficult. If a com- point lies strictly below the diagonal. Long-lived QSS appear
munity is simply defined as an internally stabléspecies as large gaps and horizontal segmeets., the one near 10
community, then an estimate for their total number can beyenerations The inset shows a detail of 4@enerations near
obtained from( () of Eq.(22) as described in Appendix B. the diagonal around 1.6510". As we see, there are many
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FIG. 8. (Color onlin@ (a) Number of communities visited, shown vs time for a single run f generations. A new community is
counted whenever the overlap function falls belby;,;. The upper pair of curves corresponds1g,=0.95, and the lower pair to 0.90. The
top curve in each paigthin, gray curve, red onlinecounts both prototype communities and revisits, while the bottom dimeavy, black
curve excludes revisitstb) For O = 0.95 only, the abscisdagives the starting time of each revisit, while the ordingtgives the starting
time of the associated prototype community. Inset: details fstt, over 16 generations(c) Lower curve: cumulative histogram fog/t,
from part(b). About 60% of the revisits are to other recently visited communities, while the rest are approximately uniformly distributed over
all previously visited communities. Upper curve: corresponding resul©fgy=0.90. See discussion in Sec. IV E.

pointsjust belowthe diagonal, representing the fluctuationsmunities since even a rough partition depends on the details
around the(many short-liveg] QSS. By contrast, points far of coarse graining. Nevertheless, we can conclude that the
below the diagonal represent “throwbacks” to the vicinity of dynamics produces a steady stream of essentially new com-
earlier prototype communities. Note that the density ofmunities drawn from the vast supply of possibilities.

points is much higher just below the diagonal, implying that
a large portion of the revisited communities are “fluctuation
related.” To highlight these differences, we show the cumu-
lative probability of the ratid,/t, in Fig. 8(c), in which the In this work we have studied, by linear stability analysis
lower curve corresponds to the data in Fio)8For the case and large-scale Monte Carlo simulations, a simplified version
of Og,=0.95 (lower curvg, we see that about 60% of the of the tangled-nature model of biological coevolution, re-
revisits can be regarded as “fluctuation relate@ith t,  cently introduced by Hall and co-worke$0—13. Selection
=t,), while the rest are throwbacks. Roughly, the latter com-s provided by interspecies interactions through the reproduc-
ponent appears to be distributed uniformly over all earliettion probability P, [Eg. (1)], which corresponds to a nonlin-
times. The upper curve shows the corresponding result fogar population-dynamics model of the community ecology,
O.+=0.90. Corresponding to using a more coarse-graineavhile the genetic variability necessary for evolution is pro-
covering of state space, it naturally displays a larger proporvided by a low rate of mutations that act on individual or-
tion of throwbacks. Not surprisingly, there is no sharp dis-ganisms during reproduction.

tinction between these two components of the revisited com- At the low mutation rate studied here, the model provides

V. SUMMARY AND CONCLUSIONS
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an intermittent, statistically self-similar behavior, character-els. This entails combining stochastic models from commu-
ized by periods of relative calm, interrupted by bursts ofnity ecology with models of mutations and sexual reproduc-
rapid turnover in genotype space. During the quiet periodsiion at the level of individual organisms, and investigating

or quasisteady state®)SS, the population consists of a the consequences of more biologically realistic interspecies
community of a relatively small number of mutualistically interactions.

interacting genotypes. The populations of the individual
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shows a very wide distribution with a power-law like long- APPENDIX A: MASTER EQUATION

time behavior characterized by an exponent ne@r. Con- - .
sistent with this result, the power spectral density of the di- . A COmPplete description of the stochastic process can be

versity shows 1/ noise. While there are claims that similar 91Ven in terms of a master equation, which specifies the evo-
statistics characterize the fossil recddB,50-53, this is  lution of P(n,t), the probability that the system is found
still a contested issu¢50,59. At best, observations of with compositionn at timet. Here,n={n;,n,, . .. Ny b
power-law distributions and f/noise in the fossil record ang A7 =2" is the number of individuals of speci¢sIn
extend over no more than one or two decades in time Opyr casel =13 andN,,,=8192. Similar to the main text,
frequency, and it must remain an open question whether thige gefineN,,=3,n, and letN, be the carrying capacity.

is the optimal interpretation of the scarce data available. We write the probability for an individual of speciégo
Due to the absence of sexual reproduction, our model cagyyive to reproduce as

at best be applied to the evolution of asexual, haploid organ-
isms such as bacteria. It should also be noted that no specific,
biologically relevant information has been included in the P,(ﬁ)z
interaction matrixM. In particular, this fact may be respon-
sible for our QSS being strongly dominated by mutualistic o . ) )
relationships. The absence of biologically motivated detail inThe main difference between this expression and(Edies
M is both a strength and a weakness of the model. Itén the interpretation. Hera is a “coordinate variable” in the
strength lies in reinforcing the notion of universality in mac- NV,-dimensional space, in contrast tg(t) being just a
roevolution models, e.g., power-law behaviors arfdribise.  point in this space.
By the same token, its weakness lies in the lack of biological To proceed, we define the symbpml] as the rate for
o o ehrora e e iy e Seapeg e fom sl o “moters). i each
i S . ' ' . individual is given a chance to survive accordingRp, we
effects of interspecies interactions on the macroevolutionar
behavior in models similar to the one studied here represents
an important field of future research. Examples include the
importance of the connectivity of the interaction matrix, cor-
related interspecies interactiof83], and interaction struc-
tures corresponding to food webs with distinct trophic levels.
Despite all these caveats, we find it encouraging that suctvhich has the form of a binomial distribution. Next, each
a simple model of coevolution with individual-based dynam-mother gives rise t& offspring. However, due to mutations,
ics can produce punctuated equilibria, power-law distribunot every offspring is of the same genotype as the mother.
tions, and 1f noise consistent with current theories of bio- Although it is possible to have mutants with a genotype dif-
logical macroevolution. We believe future research shouldering from the mother by more than one bit, we restrict
proceed in the direction pointed out by this and similar mod-ourselves here to a simpler version, namely, mutant geno-

Niot ny
1+exp—— M;—
;{ NO J ) Ntot

-1
] . (A1)

I nl' m, ny—m
ml}=m(|°|) (1=P)"™,  (A2)
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types that can differ only by one bit. Since our simulationsdenoted by{n,(t)}). We shall also demonstrate that, for a

typically involve u~ 103, this restriction should not lead to

QSS,P(ﬁ,t—mO) is well approximated by a Gaussidfor

serious difficulties. Given that only one bit may be fIipped,Mil/No< 1), the center of which is just the fixed point given

there ard. +1 possible varieties of offspring for each mater-

nal genotype. We introduce the notation

b;o for the number of offspring from mothed
with no mutations,
by for the number of offspring from mothed

with the kth bit flipped.

We now define the multinomial-like symbol

Fm;, _m .
|:b‘]101b\]y]_, coobgy - (byo)! (1— )30
= bk
AR
anlm(f) A3

which is the probability that th&m; offspring are distrib-
uted into the specific s€i;,by1, ...,by}. The last in-
gredient needed is the connection matrix

1
0

AIK if genotypeG is J with the kth bit flipped
¢ otherwise,
(A4)

so that the number of offspring bointo speciesG due to
mutations is

be=2, Aékba,k- (A5)
Tk
The final result is
P t+1)= > [ 8(ng—bgo—be)
nm{b} G
FmJ {r“ R

X P(n,t).

J [bJ,O!bJ,la R !bJ,L H m, ( )
(A6)

In principle, once the dynamics @? is found, the time
dependence of various quantiti@sg., averages and correla-
tions) can be computed. For instance,

by Eq.(12). The width of this Gaussian is governed in part

by the community matrixA of Eq. (14). In addition to this
(systematic, “drift”) part, there is a part governing the noise
correlations. Between the two, we can compute distributions
of step sizesi{’ —n). For a long-lived QSS, it is easy to
compile data so that quantitative comparisons with these pre-
dictions can be made.

APPENDIX B: COUNTING COMMUNITIES

In this appendix we obtain estimates for the numbers of
different communities that could in principle be observed in
an infinitely long simulation. Even our most conservative
estimate is vastly larger than the numbers observed in a
simulation run of 2° generations in Sec. IV E.

If a community is simply defined as an internally stable
N-species community, then an estimate for their total num-
ber can be obtained frofl (N) of Eq. (22). SinceQ(N) is
quite sharply peaked around/", we can estimate that
EN()(./\/)~Q(NT)w2LNTqNT(NT_1)/2f~v(2a/2)a|-2 with a
=In2/In(1/q). For q=1/4 andL=13, this givesQ(NT)
~5.2x 10'2, while direct summation of) (V) with the same
parameters givel £ (N)=8.5x 10" with 46% due to the
contribution fromAN=A"=6 and convergence hyv=11.

As it does not include unstable communities, this would
serve as our most conservative estimate of the total number
of communities that could be visited in an infinitely long
simulation.

To estimate the total number of different communities that
can be distinguished by the overlap cutoff method described
in Sec. IVE, we note that the overlap threshdd,; is
simply the cosine of the angle between two vectors in popu-
lation space, O, =cosf. For convenience, we define
e=1—0¢y, such thate is small (0.1 and 0.05). Then,
6=arccos(t €)~\2¢e. The fact that the number of popu-
lated species at any one time is ne®f, means that the
direction of the population vectdn,} to a reasonable ap-
proximation lies within the first hyperoctant of one (éﬁ“()
NT-dimensional hyperspheres. The total number of commu-
nities that can be distinguished with a cut6if, is the ratio
of the total A/T-dimensional solid angle covered by the hy-
peroctants to that of a hypercone subtendedbyhe solid

(=2 nP(n,t) (A7) angle of the hyperoctants is
n
is the average number of individuals of speciest timet. vV ~(M9rt) S_N][ (B1)
From this very detailed description, we see that the evolution AN oAt
of various quantities can be derived. However, these evolu-
tion equations are extremely complex in general andvhere Sy;=27%%T'(d/2) is the surface area of a

progress is usually possible only by making a “mean-field” d-dimensional unit sphere. The solid angle of the hypercone
approximation, in which all correlations are neglected. Thusijs

averages of products ofare replaced by the products of the

averages. As a result, a nonlinear evolution equatiorfripy
results. In a subsequent papé#d], we shall show that Eq.

(2) is precisely the result of such an approagtith (n),

(26)(NT71)/2

4
Cle)= S/\/’T—lfo (sing)'"2~Sy1, N

1
(B2)
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for small e. Using Stirling’s approximation for th& func-
tions in Sy, I'(z2)~(z/e)’y2w/z, and the identity
Iimn_m[l—(lln)]“ze‘l, we estimate the total number of

different communities to be

V27N Te
NT2

Nmax)
(2¢)

NT (83)

M(e)~(

PHYSICAL REVIEW E68, 031913 (2003

This estimate is reasonable only as longsas large enough

to exclude minor fluctuations within QSS. Observation of
overlap fluctuations in some of the QSS included in Table |
indicates that.; in the range of 0.90-0.95 is optimal. With
the parameters used in this work, E&3) yields M~ 10*!

for Oy, =0.90 andM ~10?? for 0.95. If, instead of using
NT=6, we assume that the number of genotypes at any time
is near 8, as indicated by the top curve in Fig. 6, these esti-
mates are increased by six orders of magnitude.
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