
PHYSICAL REVIEW E 68, 031913 ~2003!
Punctuated equilibria and 1Õf noise in a biological coevolution model
with individual-based dynamics
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We present a study by linear stability analysis and large-scale Monte Carlo simulations of a simple model of
biological coevolution. Selection is provided through a reproduction probability that contains quenched, ran-
dom interspecies interactions, while genetic variation is provided through a low mutation rate. Both selection
and mutation act on individual organisms. Consistent with some current theories of macroevolutionary dynam-
ics, the model displays intermittent, statistically self-similar behavior with punctuated equilibria. The probabil-
ity density for the lifetimes of ecological communities is well approximated by a power law with exponent near
22, and the corresponding power spectral densities show 1/f noise~flicker noise! over several decades. The
long-lived communities~quasisteady states! consist of a relatively small number of mutualistically interacting
species, and they are surrounded by a ‘‘protection zone’’ of closely related genotypes that have a very low
probability of invading the resident community. The extent of the protection zone affects the stability of the
community in a way analogous to the height of the free-energy barrier surrounding a metastable state in a
physical system. Measures of biological diversity are on average stationary with no discernible trends, even
over our very long simulation runs of approximately 3.43107 generations.
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I. INTRODUCTION

Biological evolution offers a number of important, un
solved problems that are well suited for investigation
methods from statistical physics. Many of these can be s
ied using complex, interacting model systems far from eq
librium @1#. Areas that have generated exceptional inter
among physicists are those of coevolution and speciatio
large class of coevolution models have been inspired by
introduced by Bak and Sneppen@2#, in which species with
different levels of ‘‘fitness’’ compete, and the least fit spec
and those that interact with it are regularly ‘‘mutated’’ an
replaced by new species with different, randomly chosen
ness. Models in this class exhibit avalanches of extincti
and appear to evolve towards a self-organized critical s
@3,4#. Although such models may be said to incorporate D
win’s principle of ‘‘survival of the fittest,’’ they are artificial
in the sense that mutation and selection are assumed t
collectively on entire species, rather than on individual me
bers of their populations.

In reality, mutations are changes in the genotypes ofindi-
vidual organismsthat are introduced or passed on duri
reproduction. These changes in the genotype affect the
notype~physical and behavioral characteristics of the org
ism and its interactions with other organisms!, and it is on
the level of the phenotypes of individuals that competiti
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and selection act. A number of evolution models~see, e.g.,
Ref. @1# for a review from a physicist’s point of view! there-
fore take as their basis a genome in the form of a string
‘‘letters’’ as in Eigen’s quasispecies model of molecular ev
lution @5,6#. Depending on the level of the modeling, th
letters of the genomic ‘‘alphabet’’ can be a~possibly large!
number of alleles at a gene locus, or the four nucleotides
a DNA or RNA sequence@7#. However, the size of the al
phabet is not of great importance in principle, and it is co
mon in models to use a binary alphabet with the two letter
and 1~or 61) @1,5–7#.

We believe a fruitful approach to the study of coevoluti
is one in which selection is provided by interspecies inter
tions along the lines commonly considered in commun
ecology, while genetic variation is provided by random m
tations in the genomes of individual organisms. An ea
attempt in this direction is the coupledNK model with popu-
lation dynamics introduced by Kauffman and Johnsen@8,9#,
but thus far not many similar models have been studi
Recently, Hall and co-workers@10–12# introduced a model
they called the ‘‘tangled-nature’’ model, in which each ind
vidual lives in a dynamically evolving ‘‘fitness landscape
created by the populations of all the other species. Here
consider a simplified version of this model, in which no i
dividual is allowed to live through more than one reprodu
tion cycle. This restriction to nonoverlapping generations
ables us to both study the model in detail by linear stabi
analysis and to perform very long Monte Carlo simulatio
of its evolutionary behavior. In short, the model consists
populations of different species, on which sele
©2003 The American Physical Society13-1
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tion acts through asexual reproduction rates that depen
the populations of all the other species via a constant,
dom interaction matrix that allows mutualistic, competitiv
and predator-prey relations. In addition to these direct in
actions, all individuals interact indirectly through compe
tion for a shared resource. The competition keeps the t
population from diverging. Genetic variety is provided by
low mutation rate that acts on the genomes of individ
organisms during reproduction, inducing the populations
move through genotype space. The resulting motion is in
mittent: long periods of stasis with only minor fluctuatio
are interrupted by bursts of significant change that is rapid
a macroscopic time scale, reminiscent of what is known
evolutionary biology as punctuated equilibria@13–15#. A
preliminary report on some aspects of the work reported h
is given in Ref.@16#.

The main foci of the present paper are the structure
stability of communities and the statistical properties of
dynamical behavior on very long~‘‘geological’’ ! time scales.
The rest of the paper is organized as follows. In Sec. II
describe our model in detail, including the detailed Mon
Carlo algorithm used for our simulations. In Sec. III we d
cuss the properties of the fixed points of the population
the mutation-free version of the model. Many of these pr
erties can be understood analytically within a simple me
field approach. A full, probabilistic description of our mod
is also possible, although the mathematics is somewha
volved. In Appendix A we provide, for the sake of complet
ness, the key equations of this approach. In Sec. IV we g
a detailed report on our large-scale Monte Carlo simulati
and the numerical results, together with a discussion of t
relations to the fossil record and to other theoretical mod
Finally, in Sec. V, we summarize our results and give o
conclusions and suggestions for future studies.

II. MODEL AND ALGORITHM

As mentioned in Sec. I, we use a simplified version of
tangled-nature model introduced by Hall and co-work
@10–12#. It consists of a population of individuals with
genome ofL genes, each of which can take one of the t
values 0 or 1. Thus, the total number of different genoty
is Nmax52L. We consider each different genotype as a se
rate species, and we shall in this paper use the two te
interchangeably. This is justified by the idea that in the re
tively short genomes we can consider computationally, e
binary ‘‘gene’’ actually represents a group of genes in
coarse-grained sense.

In our version of the model, the population evolves
discrete, nonoverlapping generations~as in, e.g., many in-
sects!, and the number of individuals of genotypeI in gen-
erationt is nI(t). The total population isNtot(t)5( InI(t). In
each generation, the probability that an individual of gen
type I produces a litter ofF offspring before it dies is
PI($nJ(t)%), while the probability that it dies without off-
spring is 12PI . Although the fecundityF could be quite
complex in reality~e.g., a function ofI on the average, bu
random both in time and for each individual!, we here take a
simplistic approach and assume that it is a constant, inde
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dent ofI andt. The main difference from the model of Ref
@10–12# is that the generations are nonoverlapping in o
model, while individuals in the original model may liv
through several successive reproduction cycles. This sim
fication facilitates theoretical analysis and enables us
make significantly longer simulations than those reported
Refs.@10–12#. In the ‘‘opposite’’ direction, the earlier mode
could be generalized to include nontrivial ‘‘age structure
since individuals living through several cycles can be
signed an age, with age-dependent survival and reproduc
properties@17–25#.

As in the original model@10–12#, the reproduction prob-
ability PI is taken as

PI~$nJ~ t !%!5
1

11expF2(
J

MIJnJ~ t !/Ntot~ t !1Ntot~ t !/N0G .

~1!

Here, the Verhulst factorN0 @26# represents an environmen
tal ‘‘carrying capacity’’ that might be due to limitations o
shared resources, such as space, light, or water. It prev
the total population from indefinite growth, stabilizing it a
O(N0). The interaction matrixM expresses pair interaction
between different species such that the elementMIJ gives the
effect of the population density of speciesJ on speciesI.
Thus, a mutualistic relationship is represented by bothMIJ
andMJI being positive, while both being negative models
competitive relationship. If they are of opposite signs,
have a predator-prey situation. To concentrate attention
the effects of interspecies interactions, we follow Refs.@10–
12# in setting the self-interactionsMII 50. The off-diagonal
elements ofMIJ are randomly and uniformly distributed o
@21,1# as in Ref.@11#. The interaction matrix is set up at th
beginning of the simulation and is not changed later, a s
ation that corresponds to quenched disorder in spin-g
models@27#. We note that we have not attempted to giveM
a particularly biologically realistic form. Some possib
modifications are discussed in Sec. V.

In this model there is a one-to-one correspondence
tween genotype~the I th specific bit string! and phenotype
~the I th row and column ofM ). Thus, the phenotype spec
fies both how theI th species influences the other species t
are either actually or only potentially present in the comm
nity ~the I th column! and how it is influenced by others~the
I th row!. The reproduction probabilityPI provides selection
of the ‘‘most fit’’ phenotypes according to these ‘‘traits’’~ma-
trix elements! and the populations of the other speci
present in the community. The effect~or lack thereof! of a
particular trait depends on the community in which the s
cies exists, just as a cheetah’s superior speed is only rele
to survival if fast-moving prey is available.

In each generation, the genomes of the individual o
spring organisms are subjected to mutation with probabi
m/L per gene and individual. Mutated offspring are rea
signed to their new genotypes before the start of the n
generation. This provides the genetic variability necess
for evolution to proceed.
3-2
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PUNCTUATED EQUILIBRIA AND 1/f NOISE IN A . . . PHYSICAL REVIEW E68, 031913 ~2003!
The analytic form ofPI($nJ(t)%), Eq. ~1!, is by no means
unique. For instance, one could use a ‘‘soft dynamic’’@28# in
which the effects of the interactions and the Verhulst fac
factorize in PI . Alternatively, one could dispense with th
exponential and use linear or bilinear relationships inste
as is most common in population biology@29#. Investigations
of the effects of such modifications are left for the future

Our evolution algorithm proceeds in three layers of nes
loops.

~1! Loop over generationst.
~2! Loop over theN(t) populated genotypesI in genera-

tion t.
~3a! Loop of lengthnI(t) over the individuals of genotype

I. Each individual producesF offspring for generationt11
with probability PI($nJ(t)%), or dies without offspring with
probability 12PI . In either case, no individual survive
from generationt to generationt11.

~3b! Loop of length equal to the total number of offsprin
of genotypeI generated in loop~3a!, attempting to mutate
each gene of each individual offspring with probabilitym/L,
and moving mutated offspring to their respective new ge
types for generationt11.

III. LINEAR STABILITY ANALYSIS

Though neither our model nor the simulations are de
ministic, a number of their gross properties can be und
stood in terms of a mean-field approximation that igno
statistical fluctuations and correlations. The time evolution
the populations is then given by the set of difference eq
tions,

nI~ t11!5nI~ t !FPI~$nJ~ t !%!@12m#

1~m/L !F(
K(I )

nK(I )~ t !PK(I )~$nJ~ t !%!1O~m2!,

~2!

where(K(I ) runs over theL genotypesK(I ) that differ from
I by one single mutation~i.e., the Hamming distance@30#
HKI51). The corrections ofO(m2) correspond to multiple
mutations in single individuals. Naturally, a full investigatio
of this equation is highly nontrivial, even in the absence
random noise. In particular, Eq.~2! can be regarded as
logistic map in a 2L-dimensional space. Logistic maps a
known to admit, in general, both fixed points and cycles
nontrivial periods@29#. To keep both analysis of simulation
and theoretical investigations manageable, we choose pa
eters in such a way that we can focus our attention on fi
points.

Of course, what we simulate are stochastic proces
However, as long as the mutation rate is well below the e
threshold for mutational melt-down@1,5–7,10,12#, new suc-
cessful mutations can become fixed in the population be
another successful mutant arises. This results in a separ
of time scales between the ecological scale of fluctuati
within fixed-point communities and the evolutional scale
the durations of such communities@31#, which are known as
quasisteady states~QSS! or quasievolutionarily stable strate
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gies ~q-ESS! @10,11#. By ignoring mutations, we can mak
some analytical progress and gain some insight into the
ture and stability properties of these QSS.

A. N-species fixed points

A fixed point of Eq.~2!, defined by

nI* ~ t11!5nI* ~ t ![nI* , ~3!

is characterized by having onlyN (<2L) nonvanishingnI* .
~Henceforth, an asterisk will signify a quantity as a fixe
point value.! Following Ref.@32#, we denote a fixed point a
feasibleif nI* .0 for all N values ofI. Corresponding to the
coexistence ofN genotypes, such a point will be simpl
referred to as an ‘‘N-species fixed point.’’ When mutation
are ignored, Eq.~2! reduces to

nI~ t11!5nI~ t !FPI~$nJ~ t !%!. ~4!

Specializing to the form ofPI given by Eq.~1!, we see that
all single-species fixed points are trivially ‘‘identical,’’ with
nI* 5Ntot* 5N0ln(F21). This somewhat unrealistic result
just a consequence of our choice ofMII 50 and can be
avoided by lifting this restriction. However, the absence
self-interactions places no restriction on the main purpose
our work—the exploration of the effects of random but tim
independent interspecies interactions.

Proceeding to theN>2 cases, the existence of a
N-species fixed point depends critically on the submatrixM̃ ,
with matrix elementsMIJ in which bothI andJ are among
the N species in question.~We shall use the tilde to empha
size that a quantity corresponds to anN-species subspace
rather than to the full, 2L-dimensional genotype space.! In
particular, if M̃ is nonsingular, then a unique fixed poin
exists, as we show below. On the other hand, singularM̃ ’s
may result in a variety of ‘‘degenerate’’ cases. We provi
just two examples to illustrate the mathematical richness
singularM̃ ’s. If all elements vanish, then the behavior in th
subspace is highly degenerate, with thetotal population
given again byNtot* 5N0ln(F21), regardless ofN. However,
the fractions of each species,

r I* [nI* /Ntot* , ~5!

are completely undetermined, an understandable co
quence of having dynamically indistinguishable species. A
other example of a singular interaction submatrix isM̃
5(0

0
0

m.0) in anN52 subspace. Then, Eq.~4! will drive one
of the species to extinction, so that no fixed point with bo
nI.0 ~stable or unstable! can exist in this two-dimensiona
subspace, and the system collapses toN51. For the remain-
der of this paper, we shall study analytically only the d
namical behavior of interacting species with nonsingu
M̃ ’s.

To proceed, we insert Eq.~3! into Eq.~4! and arrive at the
N equations

FPI~$nJ* %!51. ~6!
3-3
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With our choice ofPI , these lead to

(
J

MIJrJ* 5
Ntot*

N0
2 ln~F21!. ~7!

~The analysis in this section remains valid even ifMII Þ0,
althoughMII 50 is the case explicitly considered elsewhe
in this paper.! Note that the right-hand side of Eq.~7! is
independentof I. SinceM̃ is nonsingular, we define its in
verse byW̃, with elementsW̃IJ :

W̃IJ[~M̃21! IJ . ~8!

Then Eq.~7! can be inverted to give

r I* 5FNtot*

N0
2 ln~F21!G(

J
W̃IJ . ~9!

The only unknown in this equation,Ntot* , can now be found
via the normalization condition(r I* 51, which leads to

Ntot* /N05 ln~F21!11/S̃, ~10!

where

S̃[(
IJ

W̃IJ . ~11!

Putting these into Eq.~9!, we have the explicit form of the
fixed-point populations:

nI* 5N0F ln~F21!1
1

S̃
G(J

W̃IJ

S̃
. ~12!

Although Eq.~12! appears to provide fixed-point value
for anychoice of control parameters, we emphasize that
applicable only for a limited range ofF andM̃ . The subtlety
lies in its stability properties within theN-species subspace
First, we remind the reader that, even in the case ofN51,
there are a variety of behaviors. Solutions may have a st
fixed point with either monotonic or oscillatory decay
small deviations, or they may show bifurcations, period d
bling, and chaos@29#. In the present study, we are interest
in the effects of the interspecies interactions, and we th
fore choose to focus on systems with monotonically dec
ing fluctuations in the noninteracting limit. This means th
small fluctuations about the fixed point must decay
d(t11)/d(t)P^0,1&. For the single species andM50 cases,
this restriction is easily translated to the condition 2,F
&4.5 for the fecundity. We useF54 in all of our simula-
tions.

Next, through a straightforward linear stability analys
around theN-species fixed point, we obtain a condition th
represents decay of all small perturbations, i.e., all the eig
values of the matrix
03191
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]nI~ t11!

]nJ~ t ! U
$nI* %

~13!

must have real parts, lying between21 and 1. Carrying out
the differentiation and using Eq.~4! to simplify the result, we
find this matrix to be of the form11L̃, where 1 is the
N-dimensional unit matrix and the elements ofL̃ are given
by

L̃IJ5S 12
1

F D r I* @MIJ2 ln~F21!22/S̃#. ~14!

Our criterion translates to the requirement that all the eig
values ofL̃ must have real parts that lie in̂22,0&. Fixed
points with this property will be called ‘‘internally stable.
Unfortunately, this criterion cannot be made more explic
GivenF and a set ofMIJ , L̃ must be constructed using Eq
~8!–~11! and diagonalized. The matrixL̃ is recognized as
what is known in ecology as thecommunity matrix@29# of
the N-species fixed point for the discrete-time dynamic d
fined by Eq.~4!.

It has been shown, both numerically@33# and analytically
@34#, that the proportion of large, random matrices for whi
all eigenvalues have a negative real part vanishes as the
portion of nonzero matrix elements increases. This has b
used as an argument that highly connected ecosystems
intrinsically unstable@34#, contrary to ecological intuition.
However, the matrix that must be studied to determine
internal stability of a fixed point is the community matrixL̃,
which has a complicated relationship to the interaction m
trix M and should not be expected to have a simple elem
distribution. In fact, for some bilinear population dynami
models there is numerical evidence that mostfeasiblefixed
points are also internally stable@32,35#. However, the rela-
tions between connectivity and stability have not yet be
fully clarified and are still being discussed@36,37#.

Of course, issues of internal stability are somewhat a
demic for simulations. In practice, an internally unstab
fixed point could not be observed for more than a brief tim
especially since the populations would be driven away fr
such fixed points by the noise due to both the birth/de
process and the mutations.

B. Stability against other species

Since mutations are essential for the long-time evoluti
ary behavior, the ‘‘external stability’’ properties of the fixed
point communities are important. Even if the population c
responds to an internally stableN-species fixed point,
mutations will generate small populations of ‘‘invader’’ sp
cies, i.e., genotypes outside the residentN-species commu-
nity. Denoting such invaders by the subscripti and lineariz-
ing Eq. ~4! about theN-species fixed point, we see that th
important quantity is the multiplication rate of the invad
species in the limit of vanishingni /Ntot ,

ni~ t11!

ni~ t !
5

F

11~F21!expF S 12(
JK

MiJW̃JKD /S̃G .

~15!
3-4
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To obtain this result we exploited Eqs.~10! and~12!. Explic-
itly, the condition for stability against the invade
ni(t11)/ni(t),1, reduces to the requirement that the arg
ment of the exponential function in Eq.~15! must be posi-
tive. We also note that, ifMiJ50 for all J in the resident
community, then the multiplication rate of the invader equ
unity. In population biology the Lyapunov exponent ln@ni(t
11)/ni(t)# is known as theinvasion fitnessof the mutant with
respect to the resident community@31,38#. From Eq.~15! it
becomes clear that the success of an invader depend
only on its direct interactionsMiJ with each of the residen
species, but also on the interactions between the resi
species through the inverse interaction submatrixW̃JK .

IV. SIMULATION RESULTS

The model described in Sec. II was studied by Mon
Carlo simulations with the following parameters:L513, F
54, N052000, andm51023. The random matrixM ~with
zero diagonal and other elements randomly distributed
@21,1#) was chosen at the beginning of each simulation
and then kept constant for the duration of the run. In t
regime both the number of populated species,N(t), and the
total populationNtot(t);N0ln(F21)'2200 are substantially
smaller than the number of possible species,Nmax52L

58192. This appears biologically reasonable in view of
enormous number of different possible genotypes in nat
~But see further discussion in Sec. IV E and Appendix B.! In
a QSS, the average number of mutant offspring of speciI
in generationt11 is approximatelymnI(t). Thus, with the
mutation rate used here, each of the dominant species
produce of the order of one mutant organism per generat
As shown in Sec. IV B, during a QSS most of these muta
become extinct after one generation. However, due to
small genome size, the same mutant of a species with a l
population will be regenerated repeatedly by mutation fr
the parent species.

A high-population genotype with its ‘‘cloud’’ of closely
related low-population mutants could be considered a q
sispecies in the sense of Eigen, with the high-populat
genotype as the ‘‘wildtype’’@1,5–7,12#. An alternative inter-
pretation of the model is therefore as one of the coevolu
of quasispecies@12#, in which the successful invasion of
resident community by a mutant represents a specia
event in the lineage of the parent genotype.

A. General features

Most of our simulations were started with a small pop
lation of 100 individuals of a randomly selected single gen
type, corresponding to the entry into an empty ecologi
niche by a small group of identical individuals. Howeve
runs starting from a random number of small populations
different species give essentially the same results. Gener
the initial species are not likely to be stable against muta
and they usually become extinct within 100 generations.
eliminate any short initial transients, most of the quantitat
analyses presented here are based on time series from w
the first 4096 generations were removed. The simula
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quantities were recorded every 16 generations. This t
resolution was chosen to be just larger than the average
it would take for the descendants of a single individual o
mutant genotypei to completely replace a resident genoty
J of N052000 individuals in the case of a maximally aggre
sive mutant,MiJ511 and MJi521. This time, which is
obtained by numerical solution of Eq.~15!, is about 15 gen-
erations and represents a ‘‘minimum growth time’’ for th
model. Sampling at shorter intervals would mostly add ra
dom noise to the results, while sampling on a much coa
scale could miss important evolutionary events. It is easy
show, by solving Eq.~15! analytically for short times, tha
the growth time~and thus the optimal sampling interva!
increases logarithmically withN0. Most quantitative results
in this paper are based on averages over 16 indepen
simulation runs of 225533 554 432 generations each@39#.

We define thediversityof the population as the number o
species with significant populations, thus excluding sm
populations of mainly unsuccessful mutants of the ma
genotypes. Operationally, we define the diversity asD(t)
5exp@S($nI(t)%)#, whereS is the information-theoretical en
tropy @40,41#,

S~$nI~ t !%!52 (
$I ur I (t).0%

r I~ t !lnr I~ t !, ~16!

with

r I~ t !5nI~ t !/Ntot~ t !. ~17!

This measure of diversity is known in ecology as t
Shannon-Wiener index@42#. It is different from the definition
of diversity as the number of populated species~known in
ecology as thespecies richness@42#! that was used in Refs
@10,11#. The entropy-based measure significantly reduces
noise during QSS, caused by unsuccessful mutations.

The Shannon-Wiener diversity index is shown in Fig. 1~a!
for a simulation of 106 generations, together with the no
malized total populationNtot(t)/@N0ln(F21)#. We see quiet
periods during whichD(t) is constant except for small fluc
tuations, separated by periods during which it fluctua
wildly. The total populationNtot(t) is enhanced relative to its
noninteracting fixed-point value during the quiet period
while it decreases toward the vicinity of this value during t
active periods.

To verify that different quiet periods indeed correspond
different resident communities$nI%, we show in Fig. 2 the
genotype labelsI ~integers between 0 and 2L21, corre-
sponding to the decimal representation of the genotype
string! versus time for the populated species. The popu
tions of the different species are indicated by the gray sc
~by color online!. We see that, in general, the community
completely rearranged during the active periods, so that
quiet periods can be identified with the QSS of the ecolo
An exception is afforded by the event neart51.53105 gen-
erations in Figs. 1~a! and 2~a!. In this instance the popula
tions of the dominant species decrease, and the total pop
tion is, for a brief time, spread over a larger number
species. However, the dominant species ‘‘regain their fo
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FIG. 1. ~Color online! Time series from a simulation of 106 generations. The model parameters, which are the same in the subse
figures, are mutation ratem51023 per individual, carrying capacityN052000, fecundityF54, and genome lengthL513. Top curve
~black!: Shannon-Wiener diversity indexD(t)5exp@S($nI(t)%)#. Bottom curve ~gray, red online!: normalized total population
Ntot(t)/@N0ln(F21)#. ~a! The whole time series, showing intervals of quasisteady states~QSS! separated by periods of high activity.~b! Part
of one of the periods of high activity, shown on a time scale expanded 20 times. Several shorter QSS are resolved between bur
activity. Comparison with~a! suggests statistical self-similarity. See discussion in Secs. IV A and IV C.
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ing,’’ and the original resident community continues for a
proximately another 50 000 generations. This situation
reminiscent of rare events in nucleation theory@43#, in which
a fluctuation of the order of a critical or even a supercriti
droplet nevertheless may decay back to the metastable s

B. Stability of communities against invaders

To investigate the stability properties of individual com
munities against invaders, we chose from a particular sim
lation run of 106 generations ten different QSS of duratio
longer than 20 000 generations. The genotype labels
fixed-point populations that characterize these QSS are g
in the first four columns of Table I. The population-weight
average of the Hamming distancesHIJ between pairs of
genotypes in the community,
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(
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12rJ
DHIJ , ~18!

and the corresponding standard deviation

sH5A N
N21 (

I
(
J.I

r IrJS 1

12r I
1

1

12rJ
D ~HIJ2^H&!2

~19!

are shown in the fifth and sixth columns, respectively. Ev
though the community as a whole moves far through
2L-dimensional population space, the different QSS comm
nities are seen to retain the property that they consis
relatively close relatives~which, of course, are all descen
dants of the single, initial genotype!. In Sec. IV E we dem-
from
,

their
es rapidly
FIG. 2. ~Color online! Genotype labelI versus time for the same simulation run shown in Fig. 1. In order of decreasing darkness
black to very light gray the symbols indicatenI>1001,nIP@101,1000#, nIP@11,100#, niP@2,10#, andnI51. ~Online the colors are black
blue, red, green, and yellow in the same order.! Note that the difference between the label for two species bears no simple relation to
Hamming distance. Each QSS is composed of a different set of species, punctuated by periods during which the population mov
through genotype space.~a! Corresponding to Fig. 1~a!, sampled every 320 generations to facilitate plotting.~b! Corresponding to Fig. 1~b!,
sampled every 16 generations. See discussion in Secs. IV A and IV C.
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TABLE I. Composition and lifetime statistics of ten QSS that lasted at least 20 000 generations in a particular simulation run6

generations. The QSS are listed in order of increasing mean lifetime. Columns 1–4 give the genotype labels and, in parentheses
populations@the fixed-point populations given by Eq.~12!# for theN genotypes in each QSS. Columns 5 and 6 give the population-weig
mean and standard deviation of theN(N21)/2 Hamming distances between the genotypes in the initial community, Eqs.~18! and ~19!,
respectively. Columns 7 and 8 give the mean and standard deviations of theN(N21) off-diagonal interaction matrix elementsMIJ between
the genotypes in the initial community, respectively. Columns 9 and 10 give the mean and standard deviations of the lifetimes, obta
300 independent escapes for each QSS. See discussion in Secs. IV B and IV C.

Initial QSS
Genotype label,I ~Population,nI* ) ^H& sH ^MIJ& sMIJ

^Lifetime& sLifetime

5180 ~1055! 5692 ~1506! 7272 ~682! 2.79 2.26 0.79 0.16 11 366.2 11 093.4
4251 ~1051! 6275 ~1077! 6283 ~1003! 2.02 1.01 0.70 0.16 12 261.4 11 634.4
2836 ~1624! 2982 ~1472! 4.00 0.00 0.90 0.06 12 277.7 19 708.3
7135 ~995! 7357 ~909! 8191 ~1201! 3.77 1.96 0.67 0.23 19 289.9 17 865.6
4260 ~1212! 4518 ~979! 5285 ~1078! 1.91 0.99 0.81 0.16 20 216.3 20 056.4
4244 ~1034! 6164 ~1063! 6196 ~330! 6676 ~786! 1.99 0.91 0.67 0.30 35 057.9 57 527.9
3334 ~915! 3402 ~1298! 3403 ~1094! 2.45 1.54 0.83 0.13 39 577.2 44 935.3
1122 ~1308! 1146 ~987! 2149 ~1076! 4.50 2.43 0.89 0.07 39 972.4 38 328.8
7380 ~1159! 7388 ~683! 7412 ~1406! 1.28 0.55 0.79 0.16 62 186.5 67 521.7
5860 ~671! 7397 ~1407! 7653 ~473! 7909 ~694! 1.95 1.17 0.71 0.25 80 821.8 85 716.1
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onstrate that̂H& andsH remain in the range shown in Tab
I, even during very long simulations.

The averages and standard deviations of the off-diago
interaction-matrix elementsMIJ between the community
members are shown in the seventh and eighth column
Table I, respectively. They show that the QSS communi
are strongly mutualistic, as was also observed for the st
states in Ref.@8#. In contrast, the matrix elements of 22 fe
sible, but otherwise randomly chosen, communities@44,45#
were found to be approximately uniformly distributed o
@21,1#.

In Fig. 3 we show histograms of the multiplication rate
Eq. ~15! ~i.e., the exponential function of the invasion fi
ness!, of mutants that differ from the resident species by o
03191
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e

single mutation~nearest-neighbor species, minJHiJ51), and
by two mutations~next-nearest-neighbor species, minJHiJ
52) @46#. Only a very small proportion of the neares
neighbor mutants have a multiplication rate above unity@Fig.
3~a!#. ~In our sample, this very small proportion came fro
just one of the ten QSS considered.! Among the next-neares
neighbors, on the other hand, a not insignificant proport
may be successful invaders@Fig. 3~b!#. The picture for third-
nearest neighbors~not shown! is essentially the same as fo
the next-nearest neighbors. We also considered the mult
cation rates for neighbors of the two most long-lived Q
observed in our simulations, which lasted about 1.03107 and
1.43107 generations, respectively. They both had no nea
neighbors with multiplication rates above unity, and the p
y a
ance
FIG. 3. ~Color online! Histograms of the multiplication rate~exponential of the invasion fitness! for mutant speciesi against each of ten
specific QSS~thick, black lines!, compared with the same quantity against randomly chosen, feasible communities@thin, gray lines~green
online!#. The multiplication rates are calculated from Eq.~15!. ~a! When the mutant species differ from the resident community b
Hamming distance of 1~nearest neighbors@46#!. ~b! When the mutant species differ from the resident community by a Hamming dist
of 2 ~next-nearest neighbors!. See discussion in Sec. IV B.
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P. A. RIKVOLD AND R. K. P. ZIA PHYSICAL REVIEW E68, 031913 ~2003!
portions for second and third neighbors were significan
smaller than those included in Fig. 3. In both parts of Fig
are also shown the multiplication rates for neighbors of
22 randomly chosen, feasible communities introduced in
previous paragraph. In that case, approximately half of
neighbors at any Hamming distance have multiplication ra
above unity.

Summarizing the results from Table I and Fig. 3, we s
that a long-lived QSS community is characterized
strongly mutualistic interactions and is surrounded by
‘‘protection zone’’ of closely related genotypes that are ve
unlikely to successfully invade the resident community. T
evidence from the two most long-lived QSS indicates t
the average lifetime of a QSS is positively correlated w
the extent of the protection zone. By contrast, a rando
chosen, feasible community has an approximately unifo
distribution of MIJ over @21,1#. It also typically has no
protection zone and so is more vulnerable to invasion tha
QSS. It is clear from the fact that none of our random
chosen feasible communities turned out to be a QSS
QSS are relatively rare in this model, even among feas
communities. We believe this may be a favorable condit
for continuing evolution, as the ecology can move rapid
from QSS to QSS through series of unstable communitie

C. QSS lifetime statistics

The protection zone surrounding a QSS community a
much like the free-energy barrier that separates a metas
state in a physical system from the stable state or other m
stable states. In both cases a sequence of improbable m
tions or fluctuations is required to reach a critical state t
will lead to major rearrangement of the system. It is th
natural to investigate in detail the lifetime statistics of ind
vidual QSS in the way common in the study of metasta
decay @43,47#. To this effect we started simulations from
each of the ten QSS communities discussed in Sec. IV B
ran until the overlap function with the initial community,

O~0,t !5

(
I

nI~0!nI~ t !

A(
I

nI~0!2(
J

nJ~ t !2

, ~20!

became less than 0.5, at which time the system was con
ered to have escaped from the initial state.~We note that the
overlap function defined here is simply the cosine of
angle between two unit vectors in the space of popula
vectors $nI%.! The precise value of the cutoff used is n
important, as long as it is low enough to exclude fluctuatio
during the QSS@47#. The composition of the population a
this time~the ‘‘exit community’’! was then recorded and th
run terminated. Each individual initial QSS was simulat
for 300 independent escapes. The means and standard d
tions of the individual lifetime distributions are shown in th
last two columns of Table I. The mean lifetimes were fou
to range over about one order of magnitude, from appro
mately 10 000 to 80 000 generations. In most cases the i
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vidual lifetime distributions were exponential~for which the
standard deviation equals the mean!, or they had an exponen
tial component that described the behavior in the short-t
end of the range of observed lifetimes. In about half of t
QSS studied, a tail of very long lifetimes beyond the exp
nential part~indicated by a standard deviation significant
larger than the mean! was also observed. We further foun
that an initial QSS does not always escape via the same
community. Typically, the genotypes in the exit commun
that are not present in the initial QSS differ from those in t
original community by a Hamming distance of two or thre
This picture is quite consistent with the stability properties
the QSS discussed in Sec. IV B.

The range of the lifetimes of the ten QSS discussed ab
was limited: for a period to be identified by eye as a QSS,
lifetime could not be too short, while the lifetimes we
bounded above by the length of the simulation run. T
variation of a factor of ten within these limits indicates th
the dynamical behavior of the system may display a v
wide range of time scales. Another indication to this effec
provided by the details of the activity within periods th
appear as high activity in Figs. 1~a! and 2~a!. Such detail is
shown in Figs. 1~b! and 2~b!. Statistically, the picture in
these expanded figures is similar to the one seen on the la
scale, with shorter quiet periods punctuated by even sho
bursts of activity. These observations, which are similar
Refs. @10,11#, suggest statistical self-similarity at least ov
some range of time scales. Indications of self-similarity ha
also been seen in fossil diversity records@48#.

The suggestion of self-similarity that emerges from Fig
1 and 2 makes it natural to investigate the statistics of
durations of active periods and QSS over a wider range
time scales than that represented by the ten QSS include
Table I. From Fig. 1 we see that a reasonable method
make this distinction is to observe the magnitude of the
tropy changes,udS(t)/dtu, and to consider the system to b
in the active state if this quantity is above some suita
chosen cutoff. This cutoff can best be determined from
histogram ofdS/dt, such as that shown in Fig. 4~a!. It shows
that the probability density of the entropy derivative consi
of two additive parts: a near-Gaussian one correspondin
population fluctuations caused mostly by the birth/death p
cess in the QSS, and a second one corresponding to
changes during the active periods. From this figure we ch
the cutoff as 0.015, which was used to classify eve
sampled time point as either active or quiet. Normalized h
tograms for the durations of the active and quiet periods
shown in Fig. 4~b!. About 97.4% of the time is spent in QSS
The active periods are seen to be relatively short, and t
probability density is fitted well by an exponential distrib
tion @49#. On the other hand, the lifetimes of the QSS show
very broad distribution@11#—possibly a power law with an
exponent near22 for durations longer than about 200 ge
erations. We note that there is some evidence of power l
with exponents near22 in the distributions of several quan
tities extracted from the fossil record, such as the life sp
of genera or families, and the sizes of extinctions@50–53#.
However, the fossil data are sparse and extend over no m
than one or two decades in time, and they can be fitted
3-8
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PUNCTUATED EQUILIBRIA AND 1/f NOISE IN A . . . PHYSICAL REVIEW E68, 031913 ~2003!
FIG. 4. ~Color online! ~a! Normalized histogram of entropy changes, averaged over 16 generations~thick curve with shading!. Based on
16 independent runs of 225533 554 432 generations each. The near-Gaussian central peak corresponds to the QSS, while t
exponential wings correspond to the active periods. Also shown by a thin line is a histogram based on birth/death fluctuations in te
QSS communities with zero mutation rate. The latter is renormalized so that the maxima of the two histograms coincide. Based
histograms, a cutoff of@S(t)2S(t216)#/1650.015 was used to distinguish between active periods and QSS.~b! Normalized histograms for
the length of active periods (1) and QSS@solid, light gray circles~cyan online! and solid, dark gray squares~red online!#. Based on 16
independent runs of 225 generations each. Two of the histograms (1 and circles! use a constant bin width of 16 generations. In order
capture the information for large durations, the data for the QSS were also analyzed with exponentially increasing bin size~squares!. Error
bars showing standard error based on the spread between the individual runs are shown only where they are larger than the symb
black curve through the points for the active periods is a least-squares fit of an exponential distribution to the data. The straight line
to the eye, corresponding to 1/x2 behavior for the QSS data. See Sec. IV C for details.
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most as well by exponential distributions@50#. Although our
data extend over a much wider range of time scales than
paleontological data, indisputable evidence of a power
remains to be established. Though a few QSS of the orde
106 generations will certainly appear in every run of 225

generations, more definite conclusions about the statistic
such long QSS must await simulations an order of magnit
longer. Another feature in Fig. 4~b! is that the distribution of
QSS durations changes to a smaller slope below about
generations. A similar effect has been observed in the fo
record of lifetimes of families@52,53#.

D. Power spectral densities

From the discussion in Sec. IV C it is clear that by usi
a cutoff for the intensity of some variable which is large
the QSS and small in the active periods~but in both cases
with fluctuations of unknown distribution!, it is impossible to
classify the periods unambiguously. For example, by incre
ing the cutoff one can make appear as a single QSS pe
what previously appeared as two successive, shorter
periods separated by a short active period. Since the p
ability of encountering an extremely large fluctuation in
QSS increases proportionally to the length of the QSS,
effect will affect the longest periods most severely. The pr
lem with determining a suitable cutoff can be avoided
instead of concentrating on period statistics, calculating
power spectral density~PSD! @54,55# of variables such as th
Shannon-Wiener diversity index or the total populatio
PSDs for these two quantities are shown in Fig. 5. The P
for the diversityD(t), shown in Fig. 5~a!, appears inversely
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proportional to the frequencyf (1/f noise or flicker noise
@56#! for f .1024, goes through a crossover regime of abo
one decade inf where it is; f 2a with a.1, and then ap-
pears to return toa'1 for 1026, f ,1025. For f ,1026 our
data are insufficient to determine the PSD unambiguou
and much longer simulations would be necessary@57#. In the
PSD forNtot(t), shown in Fig. 5~b!, the substantial popula
tion fluctuations due to the birth/death process during
QSS periods produce a large noise background which in
feres with the interpretation at high frequencies. Howev
for f ,1025 the behavior is also consistent with 1/f noise.

On time scales much longer than the mean duration o
active period, the time series for the diversity can be appro
mated by constants during the QSS, interrupted
d-function-like spikes corresponding to the active perio
~see Fig. 1!. In this limit, the relation between a very wid
distribution of the QSS durationst, described by a long-time
power-law dependence of the probability densityp(t)
;t2b, and the low-frequency behavior of the PSD is know
analytically @58#:

P~ f !;5
f 2(b21) for b,2

1/~ f u ln f u2! for b52

f 2(b21)(32b) for 2,b,3

u ln f u for b53

const for b.3.

~21!

Thus, the approximate 1/f behavior of the PSDs in Fig. 5 is
consistent with the approximate 1/t2 behavior of the prob-
ability density for the QSS durations, shown in Fig. 4~b!.
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FIG. 5. ~Color online! Power spectral densities~PSD! @54# for simulations of length 225 generations, sampled every 16 generations a
averaged over 16 independent runs. Black curve: no variance reduction. Gray curve~red online!: 16-fold variance reduction. Error bar
shown for the eight lowest frequencies in each curve are standard errors, based on the spread between the individual runs. The s
is a guide to the eye, corresponding to 1/f behavior. ~a! Shannon-Wiener diversity indexD(t)5exp@S($nI(t)%)#. ~b! Normalized total
populationNtot(t)/@N0ln(F21)#. See discussion in Sec. IV D.
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As well as power-law distributions, PSDs that go as 1f a

with a'1 have been extracted from the fossil record@48#.
However, such observed PSDs extend only over one to
decades in frequency~corresponding to power-law probabi
ity densities extending only over one or two decades
time!, and more recent work indicates that the 1/f spectra
obtained in Ref.@48# may be artifacts of the analysis metho
@59#. Although 1/f noise, at least in some frequency interv
is a property of our model and is possibly also seen in ot
models of macroevolution@2# ~but see Refs.@60,61# for con-
flicting opinions on its presence in the Bak-Sneppen mod!,
whether or not it is really present in the fossil record rema
an open question.

E. Stationarity and effects of finite genome size

An important issue in evolutionary biology is whether
not the evolving ecosystem is stationary in a statistical se
In Fig. 6 we show several diversity-related measures, a
aged over a moving time window and independent simu
tion runs. These quantities are the species richnessN(t), the
numberN2(t) of genotypes withnI>2, the Shannon-Wiene
index D(t), the total populationNtot(t), and the average
Hamming distancêH& between genotypes in the communi
and its standard deviationsH . As seen in the figure, none o
these quantities show any signs of a long-time trend over25

generations. This is consistent with fossil evidence for c
stant diversity@62#. However, it is in disagreement wit
simulations of the original version of the tangled-natu
model @10#, in which a slow growth in species richness w
observed. This discrepancy might possibly result from
different forms of the interaction matrix used in the two stu
ies, but it may also be due to the relatively short time se
used in Ref.@10#.

For our model, a simple, combinatorial phase-space a
ment ~containing neither the individual population sizes n
the mutation rate! indicates that the most probable number
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major genotypes should indeed be limited. The argum
goes as follows. A community ofN genotypes can be chose

in (N
2L

) different ways and is influenced byN(N21)/2 dif-
ferent pairs ofMIJ andMJI . We let the probability that the
pair of interactions is suitable to forming a stable commun
be q ~if the requirement is simply that bothMIJ and MJI
should be positive, thenq51/4 with our choice ofM ). Thus,

FIG. 6. ~Color online! Combined time-window and ensemb
averages of various diversity-related measures. Each data point
resents an average over a time window of 2195524 288 generations
and over 16~circles! or 7 ~triangles! independent runs of 225 gen-
erations each. Shown are, from above to below, the total numbe
species N(t), the numberN2(t) of species with nI>2, the
Shannon-Wiener indexD(t), the average Hamming distance^H&
between genotypes in the community, the normalized total pop
tion Ntot(t)/@N0ln(F21)#, and the standard deviationsH of the
Hamming distances. These data indicate the absence of any sy
atic long-time trends in the dynamical behavior. See discussio
Sec. IV E.
3-10



xi-

to

ul

o
u
nc
th

n
ha
o

ye
a

h
an
t o

-

b
.

s of
so
re
e-

d in

t

ring
tes
the
m-
m-
-

its

em
oni-
ch
a
to

ti-
of

of

B.
vary

m-

be

ains
ly
ted,
ers
ea-

the

y
y
ar

r
y

d
f a

to

PUNCTUATED EQUILIBRIA AND 1/f NOISE IN A . . . PHYSICAL REVIEW E68, 031913 ~2003!
a stableN-species community can be formed in appro
mately

V~N!5S 2L

N DqN(N21)/2 ~22!

ways, which obeys the recursion relation

V~N11!5
2L2N
N11

qNV~N! ~23!

with V(1)52L. This recursion relation can either be used
find the most probable valueN † numerically, or one can
easily obtain an estimate valid for 2L@N: N †

'L ln 2/ln(1/q). The value numerically obtained withq
51/4 is N †56, but the close correspondence to the res
shown in Fig. 6 may be fortuitous since the dependence
N † on q is only logarithmic.

Another question of interest is whether the limited size
the genome leads to ‘‘revisiting’’ of genotypes and comm
nities. The answer is affirmative and indicates the importa
of further studies of the effects of the genome size on
long-time dynamical behavior. For genotypes the question
revisits is easy to answer, and the results for a single ru
225 generations are shown in Fig. 7. As we see, in less t
33106 generations, at least two individuals of every gen
type have appeared simultaneously~curve labelednI.1).
By the end of the run, almost every genotype has enjo
being a major species withnI>1001 at least once. Plots on
log versus linear scale~not shown! indicate that the curves
are reasonably well approximated by exponential approac
to Nmax, indicating that genotypes appear to be nearly r
domly visited and revisited at a constant rate dependen
nI .

For communities, the question is more difficult. If a com
munity is simply defined as an internally stableN-species
community, then an estimate for their total number can
obtained fromV(N) of Eq. ~22! as described in Appendix B

FIG. 7. ~Color online! The number of different genotypes visite
at different population levels, shown vs time for the first half o
single run of 225 generations. From above to below,nI>2, nI

>11, nI>101, andnI>1001. Horizontal plateaus correspond
QSS. See discussion in Sec. IV E.
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The result with the parameter values used in this paper i
the order of 1012. However, unstable communities are al
briefly visited, especially during active periods, and a mo
inclusive way of counting communities would be a coars
graining procedure based on the overlap function define
Eq. ~20!. The nonzero populations are recorded att50, and
the overlap with this initial community is monitored until a
somet8.0 it falls below a suitably chosen cutoffOcut. The
set$nI(t8)% is then recorded as a new community witht8 as
its starting time. The process is repeated, now compa
with the newly recorded community. This procedure crea
a list of communities and their starting times. To address
issue of revisits, we next scan this list to extract those co
munities that represent revisits to a previously visited co
munity, or ‘‘prototype community.’’ We compare each com
munity $nI(t)% in the original list with the previously found
communities$nI( t̃ )%, sequentially in order of increasingt̃
,t. If none of the overlaps is greater thanOcut, $nI(t)% is
added to the list of prototypesMp(tp) with tp5t. If an over-
lap greater thanOcut is found at somet̃ , we stop the com-
parisons and add this community to the list of revis
Mr(t r). The starting time of this revisited community,t r

5t, is associated in the listMr(t r) with the uniquetp5 t̃ , the
starting time of the associated prototype. As the syst
evolves, the number of items in each list increases monot
cally. Clearly, the cutoffs should be sufficiently small su
that communities that differ only by fluctuations inside
QSS are not considered different, but sufficiently large
avoid counting significantly different communities as iden
cal. From inspection of the overlap fluctuations in some
the QSS included in Table I, we found thatOcut in the range
of 0.90–0.95 is optimal. Estimates of the total numbers
communities~stable and unstable! that can in principle be
distinguished by this method are obtained in Appendix
Depending on details of the assumptions, the estimates
between 1021 and 1028 for these cutoffs.

The results of the procedure described above withOcut
50.90 and 0.95 are shown in Fig. 8 for a single run of 225

generations. The upper pair of curves in Fig. 8~a! corre-
sponds toOcut50.95, and the lower pair toOcut50.90. In
each pair, the upper curve shows the total number of co
munities in the listsMp(tp) and Mr(t r), while the lower
curve shows just the number of prototypes inMp(tp). For
Ocut50.95, about 40% of the communities are seen to
revisits, while the proportion is about 30% forOcut50.90. In
both cases, the curve for the number of prototypes rem
approximately linear, indicating that the supply of previous
unvisited communities is nowhere near to being exhaus
even for such a long run. In view of the enormous numb
of available communities estimated above, this result is r
sonable. QSS appear as plateaus in the curves showing
numbers of prototypes. Figure 8~b! provides a different per-
spective~for Ocut50.95 only!. Each revisit is represented b
a point with t r as abscissa andtp as ordinate. Thus, ever
point lies strictly below the diagonal. Long-lived QSS appe
as large gaps and horizontal segments~e.g., the one near 107

generations!. The inset shows a detail of 106 generations nea
the diagonal around 1.653107. As we see, there are man
3-11
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FIG. 8. ~Color online! ~a! Number of communities visited, shown vs time for a single run of 225 generations. A new community is
counted whenever the overlap function falls belowOcut . The upper pair of curves corresponds toOcut50.95, and the lower pair to 0.90. Th
top curve in each pair~thin, gray curve, red online! counts both prototype communities and revisits, while the bottom curve~heavy, black
curve! excludes revisits.~b! For Ocut50.95 only, the abscissat r gives the starting time of each revisit, while the ordinatetp gives the starting
time of the associated prototype community. Inset: details fortp&t r over 106 generations.~c! Lower curve: cumulative histogram fortp /t r

from part~b!. About 60% of the revisits are to other recently visited communities, while the rest are approximately uniformly distribute
all previously visited communities. Upper curve: corresponding result forOcut50.90. See discussion in Sec. IV E.
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points just belowthe diagonal, representing the fluctuatio
around the~many short-lived! QSS. By contrast, points fa
below the diagonal represent ‘‘throwbacks’’ to the vicinity
earlier prototype communities. Note that the density
points is much higher just below the diagonal, implying th
a large portion of the revisited communities are ‘‘fluctuati
related.’’ To highlight these differences, we show the cum
lative probability of the ratiotp /t r in Fig. 8~c!, in which the
lower curve corresponds to the data in Fig. 8~b!. For the case
of Ocut50.95 ~lower curve!, we see that about 60% of th
revisits can be regarded as ‘‘fluctuation related’’~with tp
&t r), while the rest are throwbacks. Roughly, the latter co
ponent appears to be distributed uniformly over all ear
times. The upper curve shows the corresponding result
Ocut50.90. Corresponding to using a more coarse-grai
covering of state space, it naturally displays a larger prop
tion of throwbacks. Not surprisingly, there is no sharp d
tinction between these two components of the revisited c
03191
f
t

-

-
r
or
d
r-
-
-

munities since even a rough partition depends on the de
of coarse graining. Nevertheless, we can conclude that
dynamics produces a steady stream of essentially new c
munities drawn from the vast supply of possibilities.

V. SUMMARY AND CONCLUSIONS

In this work we have studied, by linear stability analys
and large-scale Monte Carlo simulations, a simplified vers
of the tangled-nature model of biological coevolution, r
cently introduced by Hall and co-workers@10–12#. Selection
is provided by interspecies interactions through the reprod
tion probabilityPI @Eq. ~1!#, which corresponds to a nonlin
ear population-dynamics model of the community ecolo
while the genetic variability necessary for evolution is pr
vided by a low rate of mutations that act on individual o
ganisms during reproduction.

At the low mutation rate studied here, the model provid
3-12
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an intermittent, statistically self-similar behavior, charact
ized by periods of relative calm, interrupted by bursts
rapid turnover in genotype space. During the quiet perio
or quasisteady states~QSS!, the population consists of
community of a relatively small number of mutualistical
interacting genotypes. The populations of the individu
genotypes,nI(t), fluctuate near a stable fixed point of a d
terministic mean-field, mutation-free version of the mod
@Eq. ~4!#. During the active periods, the system mov
through genotype space at a rate that is rapid on a ma
scopic~‘‘geological’’ ! time scale, although of course finite o
a microscopic~‘‘ecological’’ ! scale. These periods of rapi
change are characterized by large fluctuations in the dive
and an overall reduction of the total population. In lo
simulation runs of 225 generations, the ecosystem spen
about 97.4% of the time in QSS. The time series produced
the model are statistically stationary, and there is no evide
that any particular quantity is being optimized as the sys
moves through genotype space. In that sense, the dynam
behavior can probably best be described as a neutral drift@1#.
Overall, the dynamical behavior of this model resemb
closely the punctuated-equilibria mode of evolution, p
posed by Gould and Eldredge@13–15#.

Investigation of duration statistics for the quiet perio
shows a very wide distribution with a power-law like lon
time behavior characterized by an exponent near22. Con-
sistent with this result, the power spectral density of the
versity shows 1/f noise. While there are claims that simila
statistics characterize the fossil record@48,50–53#, this is
still a contested issue@50,59#. At best, observations o
power-law distributions and 1/f noise in the fossil record
extend over no more than one or two decades in time
frequency, and it must remain an open question whether
is the optimal interpretation of the scarce data available.

Due to the absence of sexual reproduction, our model
at best be applied to the evolution of asexual, haploid org
isms such as bacteria. It should also be noted that no spe
biologically relevant information has been included in t
interaction matrixM . In particular, this fact may be respon
sible for our QSS being strongly dominated by mutualis
relationships. The absence of biologically motivated detai
M is both a strength and a weakness of the model.
strength lies in reinforcing the notion of universality in ma
roevolution models, e.g., power-law behaviors and 1/f noise.
By the same token, its weakness lies in the lack of biolog
detail, to the point that comparison with specific obser
tional or experimental data is difficult. Clearly, the detail
effects of interspecies interactions on the macroevolution
behavior in models similar to the one studied here repres
an important field of future research. Examples include
importance of the connectivity of the interaction matrix, co
related interspecies interactions@63#, and interaction struc-
tures corresponding to food webs with distinct trophic leve

Despite all these caveats, we find it encouraging that s
a simple model of coevolution with individual-based dyna
ics can produce punctuated equilibria, power-law distrib
tions, and 1/f noise consistent with current theories of bi
logical macroevolution. We believe future research sho
proceed in the direction pointed out by this and similar mo
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els. This entails combining stochastic models from comm
nity ecology with models of mutations and sexual reprod
tion at the level of individual organisms, and investigati
the consequences of more biologically realistic interspec
interactions.
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APPENDIX A: MASTER EQUATION

A complete description of the stochastic process can
given in terms of a master equation, which specifies the e
lution of P(nW ,t), the probability that the system is foun
with compositionnW at time t. Here,nW [$n1 ,n2 , . . . ,nNmax

%,

and Nmax52L is the number of individuals of speciesI. In
our case,L513 andNmax58192. Similar to the main text
we defineNtot[( InI and letN0 be the carrying capacity.

We write the probability for an individual of speciesI to
survive to reproduce as

PI~nW !5H 11expFNtot

N0
2(

J
MIJ

nJ

Ntot
G J 21

. ~A1!

The main difference between this expression and Eq.~1! lies
in the interpretation. Here,nW is a ‘‘coordinate variable’’ in the
Nmax-dimensional space, in contrast tonI(t) being just a
point in this space.

To proceed, we define the symbol@mI

nI # as the rate for

survival ~from nI individuals tomI ‘‘mothers’’!. Since each
individual is given a chance to survive according toPI , we
have

F nI

mI
G5

nI !

mI ! ~nI2mI !!
~PI !

mI~12PI !
nI2mI, ~A2!

which has the form of a binomial distribution. Next, ea
mother gives rise toF offspring. However, due to mutations
not every offspring is of the same genotype as the mot
Although it is possible to have mutants with a genotype d
fering from the mother by more than one bit, we restr
ourselves here to a simpler version, namely, mutant ge
3-13
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types that can differ only by one bit. Since our simulatio
typically involvem;1023, this restriction should not lead t
serious difficulties. Given that only one bit may be flippe
there areL11 possible varieties of offspring for each mate
nal genotype. We introduce the notation

bJ,0 for the number of offspring from motherJ
with no mutations,

bJ,k for the number of offspring from motherJ
with the kth bit flipped.

We now define the multinomial-like symbol

F FmJ

bJ,0 ,bJ,1 , . . . ,bJ,L
G5

~FmJ!!

~bJ,0!!
~12m!bJ,0

3)
k51

L
1

~bJ,k!!
S m

L D bJ,k

, ~A3!

which is the probability that theFmJ offspring are distrib-
uted into the specific set$bJ,0 ,bJ,1 , . . . ,bJ,L%. The last in-
gredient needed is the connection matrix

DG
J,k5H 1 if genotypeG is J with the kth bit flipped

0 otherwise,
~A4!

so that the number of offspring borninto speciesG due to
mutations is

b̃G[(
J,k

DG
J,kbJ,k . ~A5!

The final result is

P~nW 8,t11!5 (
nW ,mW ,$b%

)
G

d~nG8 2bG,02b̃G!

3)
J

F FmJ

bJ,0 ,bJ,1 , . . . ,bJ,L
G)

I
F nI

mI
GP~nW ,t !.

~A6!

In principle, once the dynamics ofP is found, the time
dependence of various quantities~e.g., averages and correla
tions! can be computed. For instance,

^nI& t[(
nW

nIP~nW ,t ! ~A7!

is the average number of individuals of speciesI at time t.
From this very detailed description, we see that the evolu
of various quantities can be derived. However, these ev
tion equations are extremely complex in general a
progress is usually possible only by making a ‘‘mean-fiel
approximation, in which all correlations are neglected. Th
averages of products ofnW are replaced by the products of th
averages. As a result, a nonlinear evolution equation for^nW & t
results. In a subsequent paper@64#, we shall show that Eq
~2! is precisely the result of such an approach~with ^nW & t
03191
s

,

n
u-
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denoted by$nI(t)%). We shall also demonstrate that, for
QSS,P(nW ,t→`) is well approximated by a Gaussian~for
m,1/N0!1), the center of which is just the fixed point give
by Eq. ~12!. The width of this Gaussian is governed in pa
by the community matrixL̃ of Eq. ~14!. In addition to this
~systematic, ‘‘drift’’! part, there is a part governing the nois
correlations. Between the two, we can compute distributi
of step sizes (nW 82nW ). For a long-lived QSS, it is easy t
compile data so that quantitative comparisons with these
dictions can be made.

APPENDIX B: COUNTING COMMUNITIES

In this appendix we obtain estimates for the numbers
different communities that could in principle be observed
an infinitely long simulation. Even our most conservati
estimate is vastly larger than the numbers observed i
simulation run of 225 generations in Sec. IV E.

If a community is simply defined as an internally stab
N-species community, then an estimate for their total nu
ber can be obtained fromV(N) of Eq. ~22!. SinceV(N) is
quite sharply peaked aroundN †, we can estimate tha
(NV(N);V(N †)'2LN †

qN †(N †21)/2'(2a/2)aL2
with a

5 ln 2/ln(1/q). For q51/4 and L513, this givesV(N †)
'5.231012, while direct summation ofV(N) with the same
parameters gives(NV(N)58.531011 with 46% due to the
contribution fromN5N †56 and convergence byN511.
As it does not include unstable communities, this wou
serve as our most conservative estimate of the total num
of communities that could be visited in an infinitely lon
simulation.

To estimate the total number of different communities th
can be distinguished by the overlap cutoff method descri
in Sec. IV E, we note that the overlap thresholdOcut is
simply the cosine of the angle between two vectors in po
lation space, Ocut5cosu. For convenience, we defin
e[12Ocut, such thate is small (0.1 and 0.05). Then
u5arccos(12e)'A2e. The fact that the number of popu
lated species at any one time is nearN †, means that the
direction of the population vector$nI% to a reasonable ap
proximation lies within the first hyperoctant of one of (N†

Ntot)
N †-dimensional hyperspheres. The total number of comm
nities that can be distinguished with a cutoffOcut is the ratio
of the totalN †-dimensional solid angle covered by the h
peroctants to that of a hypercone subtended byu. The solid
angle of the hyperoctants is

Vtot;S Ntot

N † D SN †

2N † , ~B1!

where Sd52pd/2/G(d/2) is the surface area of
d-dimensional unit sphere. The solid angle of the hyperco
is

C~e!5SN †21E
0

u

~sinb!N †22'SN †21

~2e!(N †21)/2

N †21
~B2!
3-14
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for small e. Using Stirling’s approximation for theG func-
tions in Sd , G(z);(z/e)zA2p/z, and the identity
lim

n→`
@12(1/n)#n5e21, we estimate the total number o

different communities to be

M ~e!;S Nmax

N † D A2pN †e

~2e!N †/2
. ~B3!
l
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This estimate is reasonable only as long ase is large enough
to exclude minor fluctuations within QSS. Observation
overlap fluctuations in some of the QSS included in Tabl
indicates thatOcut in the range of 0.90–0.95 is optimal. Wit
the parameters used in this work, Eq.~B3! yields M;1021

for Ocut50.90 andM;1022 for 0.95. If, instead of using
N †56, we assume that the number of genotypes at any t
is near 8, as indicated by the top curve in Fig. 6, these e
mates are increased by six orders of magnitude.
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